ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGE; Antarctica; Antarctica, west; Bølling-Allerød/Younger Dryas transition; climate forcing; Deposition of sulfate, volcanic; Description; DRILL; Drilling/drill rig; EDML; EDRILL; EPICA-Campaigns; EPICA drill; EPICA Dronning Maud Land, DML28C01_00; GISP; GISP2; Glacial; Greenland; ice cores; ICEDRILL; Ice drill; Kohnen Station; Laacher See Eruption; NGRIP; NorthGRIP; Sampling/drilling ice; Stratosphere; stratospheric aerosol; sulfate aerosol; Volcanic aerosol; Volcanic stratospheric sulphur injection; Volcanic stratospheric sulphur injection, standard deviation; WD2014; WDC-06A, WAIS Divide  (1)
  • Greenland; Ice core; ICEDRILL; Ice drill; Iceland; medieval climate anomaly; NEEM-2011-S1; NGRIP1; NGRIP2; NorthGRIP; sulfate; Sulfur; Tunu13; TUNU2013; volcanic activity; Volcanic aerosol  (1)
  • Sea ice
Collection
Keywords
Years
  • 1
    Publication Date: 2024-05-03
    Description: Annual-resolved sulfur and non-sea-salt sulfur concentrations and inferred volcanic sulfate depoistion rates from the six ice cores NEEM-2011-S1 (Sigl et al., 2013), NGRIP1 (Plummer et al., 2012), NGRIP2 (McConnell et al., 2018), TUNU2013 (Sigl et al., 2015) and B19 between 699 and 1001 CE and annual-resolved non-sea-salt sulfur concentrations from a four ice-core stack (NEEM-2011-S1, NGRIP1, TUNU2013, B19) between 1731 and 1996 CE including volcanic samples and with volcanic samples replaced by a 11-year running median. Volcanic event detection is based a 91-year running median (RM) was used on the annually averaged nssS records on periods unaffected by strong changes in volcanic background emissions to estimate the natural background sulfate levels; a Median of Absolute Deviation (MAD), calculated from the RM, was used for volcanic peak detection over the background period. Between 700 and 1000 CE sulfur peaks were considered volcanic if they passed an upper threshold (K=3, estimated as RM plus 3* MAD). The duration of the event was determined when it passed the lower threshold (K=1, estimated as the RM plus 1 * MAD). These upper and lower thresholds were selected by validation on well-known historic eruptions; volcanic peaks were then removed to calculate the non-volcanic background (S RRMi). To further calculate the amount of sulfate deposited, S RRMi was subtracted from the average annual nss-S and then multiplied by the accumulation rate of the drill site; finally, volcanic flux was calculated for each event by summing the sulfate deposited across the total duration of the event. All ice cores are presented on the NS1-2011 chronology (Sigl et al., 2015) except for NGRIP2 which was on the NGRIP2-DRI chronology (McConnell et al., 2018).
    Keywords: Greenland; Ice core; ICEDRILL; Ice drill; Iceland; medieval climate anomaly; NEEM-2011-S1; NGRIP1; NGRIP2; NorthGRIP; sulfate; Sulfur; Tunu13; TUNU2013; volcanic activity; Volcanic aerosol
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-17
    Description: We used four polar ice cores - two from Greenland and two from Antarctica - to investigate volcanic sulphate deposition on polar ice sheets between 13,200 and 12,800 years BP. From Greenland, we employed discrete sulphate measurements from the Greenland Ice Sheet Project Two (GISP2; 72.97°N, 38.80°W) ice core (Mayewski et al., 1997) as well as sulphate measurements using Continuous Flow Analysis (CFA) (Bigler et al., 2002; Bigler et al., 2011) from the North Greenland Ice Core Project (NGRIP; 75.10°N, 42.33°W; 2941 m a.s.l.). From Antarctica, we used Fast Ion Chromatography (FIC) measurements from the EPICA Dronning Maud Land (EDML; 75.00°S, 00.07°E; 2892 m a.s.l.) ice core (Severi et al., 2007) as well as sulphur measurements (converted to sulphate) using Continuous Flow Analysis (CFA) coupled to an inductively coupled plasma mass spectrometer (ICPMS) (McConnell et al., 2017) from the WAIS (West Antarctic Ice Sheet) Divide ice core project (WD; 79.48°S, 112.11°W, 1766 m a.s.l.) (Sigl et al., 2016). The time resolution of the data range between multi-annual (i.e. 4 years) for GISP2 to sub-annual for NGRIP and WD. Based on these ice cores and by applying the age synchronization lattice previously developed for these cores (Seierstad et al., 2014; Buizert et al., 2018; Svensson et al., 2020) with linear interpolation between the volcanic markers, we reconstructed volcanic sulphate deposition over Greenland and Antarctica using established methods (Sigl et al., 2014; Sigl et al., 2015). Using the methodology developed and applied to a similar network of ice cores over the past 2,500 years (Toohey & Sigl 2017) we further estimated stratospheric sulphur injection (SSI) from 30 eruptions with SSI in excess of 1 Tg S.
    Keywords: AGE; Antarctica; Antarctica, west; Bølling-Allerød/Younger Dryas transition; climate forcing; Deposition of sulfate, volcanic; Description; DRILL; Drilling/drill rig; EDML; EDRILL; EPICA-Campaigns; EPICA drill; EPICA Dronning Maud Land, DML28C01_00; GISP; GISP2; Glacial; Greenland; ice cores; ICEDRILL; Ice drill; Kohnen Station; Laacher See Eruption; NGRIP; NorthGRIP; Sampling/drilling ice; Stratosphere; stratospheric aerosol; sulfate aerosol; Volcanic aerosol; Volcanic stratospheric sulphur injection; Volcanic stratospheric sulphur injection, standard deviation; WD2014; WDC-06A, WAIS Divide
    Type: Dataset
    Format: text/tab-separated-values, 150 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Atmospheres 119 (2014): 9168–9182, doi:10.1002/2013JD020720.
    Description: The sources and transport pathways of aerosol species in Antarctica remain uncertain, partly due to limited seasonally resolved data from the harsh environment. Here, we examine the seasonal cycles of major ions in three high-accumulation West Antarctic ice cores for new information regarding the origin of aerosol species. A new method for continuous acidity measurement in ice cores is exploited to provide a comprehensive, charge-balance approach to assessing the major non-sea-salt (nss) species. The average nss-anion composition is 41% sulfate (SO42−), 36% nitrate (NO3−), 15% excess-chloride (ExCl−), and 8% methanesulfonic acid (MSA). Approximately 2% of the acid-anion content is neutralized by ammonium (NH4+), and the remainder is balanced by the acidity (Acy ≈ H+ − HCO3−). The annual cycle of NO3− shows a primary peak in summer and a secondary peak in late winter/spring that are consistent with previous air and snow studies in Antarctica. The origin of these peaks remains uncertain, however, and is an area of active research. A high correlation between NH4+ and black carbon (BC) suggests that a major source of NH4+ is midlatitude biomass burning rather than marine biomass decay, as previously assumed. The annual peak in excess chloride (ExCl−) coincides with the late-winter maximum in sea ice extent. Wintertime ExCl− is correlated with offshore sea ice concentrations and inversely correlated with temperature from nearby Byrd station. These observations suggest that the winter peak in ExCl− is an expression of fractionated sea-salt aerosol and that sea ice is therefore a major source of sea-salt aerosol in the region.
    Description: This work was supported by grants from the NSF Antarctic Program (0632031 and 1142166), NSF-MRI (1126217), the NASA Cryosphere Program (NNX10AP09G), and by an award from the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF) to ASC.
    Description: 2015-01-21
    Keywords: Antarctica ; Ice cores ; Biomass burning ; Sea ice ; Nitrate ; Acidity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...