ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AERODYNAMICS  (6)
  • Fluid Mechanics and Thermodynamics  (1)
  • 1
    Publication Date: 2011-08-24
    Description: Supersonic panel methods and axisymmetric body-modeling singularity methods are presently combined with corrections for nonlinear flow phenomena to a complete missile, its airbreathing inlets, and wing-body combinations. The computer code LRCDM2 is used as an illustrative example of the methods in question. Attention is given to a preliminary method which employs panels to estimate additive drag and lift acting on supersonic rectangular inlets, as well as to the method used to correct off-body flowfields for the presence of a shock. Examples of missile applications of these methods with the appropriate nonlinear corrections are presented.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: The prediction of missile aerodynamic characteristics is presently undertaken through the application of supersonic paneling methods and nonlinear corrections to the prediction of missile aerodynamic characteristics. Attention is given to supersonic panel methods and line-singularity methods for the modeling of axisymmetric bodies, in combination with corrections for nonlinear flow phenomena, which are applied to complete missile, inlets, and wing-body combinations. The LRCDM2 computer program is used as an example of the methods presented.
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 27; 15-20
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: An experimental study was performed at supersonic speeds to measure wing and body spanwise pressure distributions on an axisymmetric-body delta wing model on which the wing vertical location on the body was systematically varied from low- to high-mounted positions. In addition, for two of these positions both horizontal and radial wing angular orientations relative to the body were tested, and roll angle effects were investigated for one of the positions. Seven different wing-body configurations and a body-alone configuration were studied. The test was conducted at Mach numbers from 1.70 to 2.86 at angles of attack from about -4 deg to 24 deg. Pressure orifices were located at three longitudinal stations on each wing-body model, and at each station the orifices were located completely around the body, along the lower surface of the right wing (looking upstream), and along the upper surface of the left wing. All pressure coefficient data are tabulated and selected samples are shown graphically to illustrate the effects of the test variables. The effects of angle of attack, roll angle, Mach number, longitudinal station, wing vertical location, wing angular orientation, and wing-body juncture are analyzed. The vertical location of the wing on the body had a very strong effect on the body pressures. For a given angle of attack at a roll angle of 0 deg, the pressures were virtually constant in the spanwise direction across the windward surfaces of the wing-body combination. Pressure-relieving, channeling, and vortex effects were noted in the data.
    Keywords: AERODYNAMICS
    Type: NASA-TM-4434 , L-17148 , NAS 1.15:4434
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A wind-tunnel investigation has been performed at low supersonic speeds (at Mach numbers of 1.60, and 2.16) to evaluate the aerodynamic characteristics of a missile concept capable of being tube launched and controlled with a simple one-axis canard controller. This concept, which features an axisymmetric body with two planar canards and four wraparound tail fins arranged in opposing pairs, must be in rolling motion to be controllable in any radial plane with the planar canards. Thus, producing a constant rolling moment that is invariant with speed and attitude to provide the motion is desirable. Two tail-fin shaping designs, one shaved and one beveled, were evaluated for their efficiency in producing the needed rolling moments, and the results showed that the shaved fins were much more desirable for this task than the beveled fins.
    Keywords: AERODYNAMICS
    Type: NASA-TM-4582 , L-17337 , NAS 1.15:4582
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: An extremely large, systematic, axisymmetric-body/tail-fin data base has been gathered through tests of an innovative missile model design which is described herein. These data were originally obtained for incorporation into a missile aerodynamics code based on engineering methods (Program MISSILE3), but these data are also valuable as diagnostic test cases for developing computational methods because of the individual-fin data included in the data base. Detailed analyses of four sample cases from these data are presented to illustrate interesting individual-fin force and moment trends. These samples quantitatively show how bow shock, fin orientation, fin deflection, and body vortices can produce strong, unusual, and computationally challenging effects on individual fin loads. Flow-visualization photographs are examined to provide physical insight into the cause of these effects.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 89-0478
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2000-2215 , Fluids; Jun 19, 2000 - Jun 22, 2000; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...