ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The multigrid method has been applied to an existing three-dimensional compressible Euler solver to accelerate the convergence of the implicit symmetric relaxation scheme. This lower-upper symmetric Gauss-Seidel implicit scheme is shown to be an effective multigrid driver in three dimensions. A grid refinement study is performed including the effects of large cell aspect ratio meshes. Performance figures of the present multigrid code on Cray computers including the new C90 are presented. A reduction of three orders of magnitude in the residual for a three-dimensional transonic inviscid flow using 920 k grid points is obtained in less than 4 min on a Cray C90.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 5; p. 950-955
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Keywords: AERODYNAMICS
    Type: Journal of Aircraft (ISSN 0021-8669); 30; 5; p. 736-743.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 30; 11; p. 2653-2659.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: An algorithm for the solution of the incompressible Navier-Stokes equations in three-dimensional generalized curvilinear coordinates is presented. The algorithm can be used to compute both steady-state and time-dependent flow problems. The algorithm is based on the method of artificial compressibility and uses a third-order flux-difference splitting technique for the convective terms and the second-order central difference for the viscous terms. The accuracy is obtained in the numerical solutions by subiterating the equations in pseudotime for each physical time step. The equations are solved with a line-relaxation scheme that allows the use of very large pseudotime steps leading to fast convergence for steady-state problems as well as for the subiterations of time-dependent problems. The steady-state solution of flow through a square duct with a 90-deg bend is computed, and the results are compared with experimental data. Good agreement is observed. Computations of unsteady flow over a circular cylinder are presented and compared to other experimental and computational results. Finally, the flow through an artificial heart configuration with moving boundaries is calculated and presented.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 29; 603-610
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: A numerical method based on the pseudocompressibility concept is developed for solving the three-dimensional incompressible Navier-Stokes equations using the lower-upper symmetric-Gauss-Seidel implicit scheme. Very high efficiency is achieved in a new flow solver, INS3D-LU code, by accomplishing the complete vectorizability of the algorithm on oblique planes of sweep in three dimensions.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 29; 874
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-19
    Description: The time-dependent, three-dimensional incompressible Navier-Stokes equations are presently solved in generalized coordinate systems by means of a fractional-step method whose primitive variable formulation uses as dependent variables, in place of the Cartesian components of the velocity: (1) pressure (defined at the center of the computational cell), and (2) volume fluxes across the faces of the cells. The momentum equations are solved by means of an approximate factorization method. A novel 'ZEBRA' scheme incorporating four-color ordering efficiently solves the Poisson equation. Illustrative two- and three-dimensional laminar flow test cases are computed and evaluated relative to extant numerical and experimental results, and good agreement is obtained.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Computational Physics (ISSN 0021-9991); 94; 102-137
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 28; 253-262
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: A time-accurate solution method for the incompressible Navier-Stokes equations in generalized moving coordinates is presented. A finite-volume discretization method that satisfies the geometric conservation laws for time-varying computational cells is used. The discrete equations are solved by a fractional-step solution procedure. The solution is second-order-accurate in space and first-order-accurate in time. The pressure and the volume fluxes are chosen as the unknowns to facilitate the formulation of a consistent Poisson equation and thus to obtain a robust Poisson solver with favorable convergence properties. The method is validated by comparing the solutions with other numerical and experimental results. Good agreement is obtained in all cases.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: International Journal for Numerical Methods in Fluids (ISSN 0271-2091); 13; 1311-132
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-29
    Description: The objective of the proposed paper is to develop a computational procedure that solves incompressible Navier-Stokes equations for pump flows. The solution method is based on the pseudo-compressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved in steadily rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. As a benchmark problem, the flow through the Rocketdyne inducer is numerically simulated. A coarse grid solution is obtained with a single zone by using an algebraic turbulence model. In multi-zone fine grid computation, a one-equation Baldwin-Barth turbulence model is utilized. Numerical results are compared with experimental measurements and a good agreement is found between the two. The resulting computer code is then applied to the flow analysis inside a two-stage fuel pump impeller operating at 80 percent, 100 percent, and 120 percent of design flow.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Goddard Space Flight Center, Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, Part 1; p 219-243
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: The INS3D family of computational fluid dynamics computer codes is presented. These codes are used to as tools in developing and assessing algorithms for solving the incompressible Navier-Stokes equations for steady-state and unsteady flow problems. This work involves applying the codes to real-world problems involving complex three-dimensional geometries. The algorithms utilized include the method of pseudocompressibility including both central and upwind differencing, several types of artificial dissipation schemes, approximate factorization, and an implicit line-relaxation scheme. These codes have been validated using a wide range of problems including flow over a backward-facing step, driven cavity flow, flow through various types of ducts, and steady and unsteady flow over a circular cylinder. Many diverse flow applications have been solved using these codes including parts of the Space Shuttle Main Engine, problems in naval hydrodynamics, low-speed aerodynamics, and biomedical fluid flows. The presentation details several of these, including the flow through a Space Shuttle Main Engine inducer, vortex shedding behind a circular cylinder, and flow through an artificial heart.
    Keywords: AERODYNAMICS
    Type: NASA Computational Fluid Dynamics Conference. Volume 1: Sessions 1-6; p 223-237
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...