ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: The purpose of a magnetically suspended flywheel energy storage system for electric utility load leveling is to provide a means to store energy during times when energy is inexpensive to produce and then return it to the customer during times of peak power demand when generated energy is most expensive. The design of a 20 kWh flywheel energy storage system for electric utility load leveling applications involves the successful integration of a number of advanced technologies so as to minimize the size and cost of the system without affecting its efficiency and reliability. The flywheel energy storage system uses a carbon epoxy flywheel, two specially designed low loss magnetic bearings, a high efficiency motor generator, and a 60 cycle AC power converter all integrated through a microprocessor controller. The basic design is discussed of each of the components that is used in the energy storage design.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Langley Research Center, International Symposium on Magnetic Suspension Technology, Part 2; p 657-672
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Fuselage, boundary layer, and nozzle pressures were measured in flight for a twin jet fighter over a Mach number range from 0.60 to 2.00 at test altitudes of 6100, 10,700, and 13,700 meters for angles of attack ranging from 0 deg to 7 deg. Test data were analyzed to find the effects of the propulsion system geometry. The flight variables, and flow interference. The aft fuselage flow field was complex and showed the influence of the vertical tail, nacelle contour, and the wing. Changes in the boattail angle of either engine affected upper fuselage and lower fuselage pressure coefficients upstream of the nozzle. Boundary layer profiles at the forward and aft locations on the upper nacelles were relatively insensitive to Mach number and altitude. Boundary layer thickness decreased at both stations as angle of attack increased above 4 deg. Nozzle pressure coefficient was influenced by the vertical tail, horizontal tail boom, and nozzle interfairing; the last two tended to separate flow over the top of the nozzle from flow over the bottom of the nozzle. The left nozzle axial force coefficient was most affected by Mach number and left nozzle boattail angle. At Mach 0.90, the nozzle axial force coefficient was 0.0013.
    Keywords: AERODYNAMICS
    Type: NASA-TP-2017 , H-1161 , NAS 1.60:2017
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The paper presents the flight-measured nozzle afterbody surface pressures and engine exhaust nozzle pressure-area integrated axial force coefficients on a twin-jet fighter for varying boattail angles. The objective of the tests was to contribute to a full-scale flight data base applicable to the nozzle afterbody drag of advanced tactical fighter concepts. The data were acquired during the NASA F-15 Propulsion/Airframe Interactions Flight Research Program. Nozzle boattail angles from 7.7 deg to 18.1 deg were investigated. Results are presented for cruise angle of attack at Mach numbers from 0.6 to 2.0 at altitudes from 20,000 to 45,000 feet. The data show the nozle axial force coefficients to be a strong function of nozzle boattail angle and Mach number.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 80-0110 , Aerospace Sciences Meeting; Jan 14, 1980 - Jan 16, 1980; Pasadena, CA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The paper considers the development of a 500-Watt-hour magnetically suspended flywheel stack energy storage system. The work includes hardware testing results from a stack flywheel energy storage system, improvements in the area of noncontacting displacement transducers, and performance enhancements of magnetic bearings. Experimental results show that a stack flywheel energy storage system is feasible technology.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: 1988 IECEC; Jul 31, 1988 - Aug 05, 1988; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The authors describe recent progress in the development of a 500-Wh magnetically suspended flywheel stack energy storage system. The design of the system and a critical study of the noncontacting displacement transducers and their placement in the stack system are discussed. The storage system has been designed and constructed and is currently undergoing experimental analysis. The results acquired from the noncontacting displacement transducer study show that currently available transducers will not function as desired and that further research is essential.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: IECEC-89; Aug 06, 1989 - Aug 11, 1989; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...