ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • AERODYNAMICS  (2)
  • Aircraft Design, Testing and Performance  (2)
  • Fluid Mechanics and Thermodynamics  (1)
  • 1
    Publikationsdatum: 2019-06-28
    Beschreibung: The ability of the Vortex Separation AEROdynamics (VSAERO) program to calculate aerodynamic loads on wings due to interaction with free vortices was studied. The loads were calculated for various positions of a downstream following wing relative to an upstream vortex-generating wing. Calculated vortex-induced span loads, rolling-moment coefficients, and lift coefficients on the following wing were compared with experimental results of McMillan et al. and El-Ramly et al. Comparisons of calculated and experimental vortex tangential velocities were also made.
    Schlagwort(e): AERODYNAMICS
    Materialart: NASA-TM-88337 , A-86330 , NAS 1.15:88337
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-18
    Beschreibung: The current study computationally examines one of the principle three-dimensional features of the flow over a high-lift system, the flow associated with a flap edge. Structured, overset grids were used in conjunction with an incompressible Navier-Stokes solver to compute the flow over a two-element high-lift configuration. The computations were run in a fully turbulent mode using the one-equation Baldwin-Barth model. Specific interest was given to the details of the flow in the vicinity of the flap edge, so the geometry was simplified to isolate this region. The geometry consisted of an unswept wing, which spanned a wind tunnel test section, equipped with a single element flap. Two flap configurations were computed; a full-span and a half-span Fowler flap. The chord based Reynolds number was 3.7 million for all cases. The results for the full-span flap agreed with two-dimensional experimental results and verified the method. Grid topologies and related issues for the half-span flap geometry are discussed. Results of the half-span flap case are presented with emphasis on the flow features associated with the flap edge.
    Schlagwort(e): Fluid Mechanics and Thermodynamics
    Materialart: AIAA Paper 95-0185 , 6th International Symposium on Computational Fluid Dynamics; Sep 04, 1995 - Sep 08, 1995; Lake Tahoe, NV; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    In:  Other Sources
    Publikationsdatum: 2019-07-18
    Beschreibung: The lecture will present experimental work pertaining to HSCT high-lift aerodynamic testing. The effects of Reynolds number and test techniques will be discussed. The performance of attached-flow and leading-edge vortex-control high-lift devices will also be presented. All of the aerodynamic data presented will be from experiments performed prior to the HSR program. The subject of airframe noise testing and its relevance to highlift testing will be discussed but no quantitative data will be presented.
    Schlagwort(e): Aircraft Design, Testing and Performance
    Materialart: An Overview of High-Lift Aerodynamics; Jun 23, 1995 - Jun 24, 1995; San Diego, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-13
    Beschreibung: A 2D numerical investigation was performed to determine the effect of a Gurney flap on a NACA 4412 airfoil. A Gurney flap is a flat plate on the order of 1 to 3 percent of the airfoil chord length, oriented perpendicular to the airfoil chord line and located at the trailing edge of the airfoil. An incompressible Navier Stokes code, INS2D, was used to calculate the flow field about the airfoil. The fully turbulent results were obtained using the Baldwin-Barth one-equation turbulence model. Gurney flap sizes of 0.5 , 1, 1.25, 1.5, 2, and 3 percent of the airfoil chord were studied. Computational results were compared with experimental results where possible. The numerical solutions show that the Gurney flap increases airfoil lift coefficient with only a slight increase in drag coefficient. Use of a 1.5 percent chord Gurney flap increases the maximum lift coefficient by approximately 0.3 and decreases the angle of attack for a given lift coefficient by more than 3 deg. The numerical solutions exhibit detailed flow structures at the trialing edge and provide a possible explanation for the increased aerodynamic performance.
    Schlagwort(e): AERODYNAMICS
    Materialart: AIAA PAPER 92-2708 , AIAA Applied Aerodynamics Conference; Jun 22, 1992 - Jun 24, 1992; Palo Alto, CA; United States
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-07-10
    Beschreibung: The present invention is directed toward a unique lift-generated noise reduction apparatus. This apparatus includes a plurality of tip fences that are secured to the trailing and leading assemblies of the high-lift system, as close as possible to the discontinuities where the vortices are most likely to form. In one embodiment, these tip fences are secured to some or all of the outboard and inboard tips of the wing slats and flaps. The tip fence includes a generally flat, or an aerodynamically shaped plate or device that could be formed of almost any rigid material, such as metal, wood, plastic, fiber glass, aluminum, etc. In a preferred embodiment, the tip fences extend below and perpendicularly to flaps and the slats to which they are attached, such that these tip fences are aligned with the nominal free stream velocity of the aircraft. In addition to reducing airframe noise, the tip fence tends to decrease drag and to increase lift, thus improving the overall aerodynamic performance of the aircraft. Another advantage presented by the tip fence lies in the simplicity of its design, its elegance, and its ready ability to fit on the wing components, such as the flaps and the slats. Furthermore, it does not require non-standard materials or fabrication techniques, and it can be readily, easily and inexpensively retrofited on most of the existing aircraft, with minimal design changes.
    Schlagwort(e): Aircraft Design, Testing and Performance
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...