ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AERODYNAMICS  (34)
  • FLUID MECHANICS AND HEAT TRANSFER  (6)
  • Aerodynamics; Fluid Mechanics and Thermodynamics  (2)
  • 11
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 26; 649-654
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-08-31
    Description: A review is given of computations for a series of nominally 2-D laminar viscous-inviscid interactions. Comparisons were made with detailed experimental shock tunnel results. The shock wave boundary layer interactions considered were induced by a compression ramp in one case and by an externally generated incident shock in the second case. In general, good agreement was reached between the grid refined calculations and experiment for the incipient and small separation conditions. For the highly separated flow, 3-D calculations which included the finite span effects of the experiment were required in order to obtain agreement with the data.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA, Lewis Research Center, Computational Fluid Dynamics Symposium on Aeropropulsion; p 473-486
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-08-31
    Description: The method of flux vector splitting used is that of Van Leer. The fluxes split in this manner have the advantage of being continuously differentiable at eigenvalue sign changes and this allows normal shocks to be captured with at most two interior zones, although in practice only one zone is usually observed. The fluxes as originally derived, however did not include the necessary terms appropriate for calculations on a dynamic mesh. The extension of the splitting to include these terms while retaining the advantages of the original splitting is the main purpose of this investigation. In addition, the use of multiple grids to reduce the computer time is investigated. A subiterative procedure to eliminate factorization and linearization error so that larger time steps can be used is also investigated.
    Keywords: AERODYNAMICS
    Type: Transonic Unsteady Aerodynamics and Aeroelasticity 1987, Part 1; p 193-214
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-08-31
    Description: An embedded grid algorithm for the Euler and/or Navier-Stokes equations is developed and applied to delta wings at high angles of attack in low speed flow. The Navier-Stokes code is an implicit, finite volume algorithm, using flux difference splitting for the convective and pressure terms and central differencing for the viscous and heat transfer terms. Calculations are compared with detailed experimental results over an angle of attack range up to and beyond the maximum lift coefficient, corresponding to vortex breakdown at the trailing edge, for a delta wing nominally of unit aspect ratio. The results indicate that the overall flowfield, including surface pressures, surface streamlines, and vortex trajectories, can be simulated accurately with the global grid version of the present algorithm. However, comparison of computed velocities and vorticity with experimentally measured off-body values at an angle of attack of 20.5 deg indicates the core region is substantially more diffuse in the computations than that measured with either a five-hole probe or a laser velocimeter. Embedded grids, used to improve the numerical discretization in the core region, are formulated within the framework of the implicit, upwind-biased multi-grid algorithm. Structured levels of local nested refinements are made. Three-dimensional results for both Euler and Navier-Stokes calculations are shown, with up to 3 levels of embedded refinement. The embedding procedure was effective in eliminating a crossflow secondary separation produced in the Euler solutions on coarse grids.
    Keywords: AERODYNAMICS
    Type: NASA, Ames Research Center, NASA Computational Fluid Dynamics Conference. Volume 2: Sessions 7-12; p 361-377
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-08-31
    Description: A comparative study was made with four different codes for solving the compressible Navier-Stokes equations using three different test problems. The first of these cases was hypersonic flow through the P8 inlet, which represents inlet configurations typical of a hypersonic airbreathing vehicle. The free-stream Mach number in this case was 7.4. This 2-D inlet was designed to provide an internal compression ratio of 8. Initial calculations were made using two state-of-the-art finite-volume upwind codes, CFL3D and USA-PG2, as well as NASCRIN, a code which uses the unsplit finite-difference technique of MacCormack. All of these codes used the same algebraic eddy-viscosity turbulence model. In the experiment, the cowl lip was slightly blunted; however, for the computations, a sharp cowl leading edge was used to simplify the construction of the grid. The second test problem was the supersonic (Mach 3.0) flow in a three-dimensional corner formed by the intersection of two wedges with equal wedge angles of 9.48 degrees. The flow in such a corner is representative of the flow in the corners of a scramjet inlet. Calculations were made for both laminar and turbulent flow and compared with experimental data. The three-dimensional versions of the three codes used for the inlet study (CFL3D, USA-PG3, and SCRAMIN, respectively) were used for this case. For the laminar corner flow, a fourth code, LAURA, which also uses recently-developed upwind technology, was also utilized. The final test case is the two-dimensional hypersonic flow over a compression ramp. The flow is laminar with a free-stream Mach number of 14.1. In the experiment, the ramp angle was varied to change the strength of the ramp shock and the extent of the viscous-inviscid interaction. Calculations were made for the 24-degree ramp configuration which produces a large separated-flow region that extends upstream of the corner.
    Keywords: AERODYNAMICS
    Type: NASA, Ames Research Center, NASA Computational Fluid Dynamics Conference. Volume 2: Sessions 7-12; p 3-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-08-31
    Description: Three-dimensional viscous flow computations are presented for the F/A-18 forebody-LEX (Leading Edge EXtensions) geometry. Solutions are obtained from an algorithm for the compressible Navier-Stokes equations which incorporates an upwind-biased, flux-difference-splitting approach along with longitudinally-patched grids. Results are presented for both laminar and fully turbulent flow assumptions and include correlations with wind tunnel as well as flight-test results. A good quantitative agreement for the forebody surface pressure distribution is achieved between the turbulent computations and wind tunnel measurements at Mach number 0.6. The computed turbulent surface flow patterns on the forebody qualitatively agree well with in-flight surface flow patterns obtained on an F/A-18 aircraft at Mach number 0.34.
    Keywords: AERODYNAMICS
    Type: NASA, Ames Research Center, NASA Computational Fluid Dynamics Conference. Volume 1: Sessions 1-6; p 361-383
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 25; 535-541
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 25; 527-534
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-19
    Description: An implicit upwind scheme for the compressible Navier-Stokes equations is described and applied to the internal flow in a dual-throat nozzle. The method is second-order accurate spatially and naturally dissipative. A spatially-split approximate factorization method is used to obtain efficient steady-state solutions on the NASA Langley VPS-32 (CYBER 205) supercomputer.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 27; 673
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...