ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 41 (1998), S. 461-467 
    ISSN: 0021-9304
    Keywords: microencapsulation ; diabetes ; atomic force microscopy ; surface characterization ; immunoisolation device ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The surface morphology of the microcapsule used as a bioartificial pancreas was examined by atomic force microscopy (AFM) under ambient conditions in a liquid environment. The standard contact mode was used for imaging. The capsules exhibited different morphologies and surface roughness depending on the composition of the cation solution: namely, the mole ratio of antigelling and gelling cations [Na+]/[Ca2+]. Surface roughness parameters obtained by AFM measurements provide quantitative information on the surface properties of the capsular membrane. In this respect, AFM can be considered a valuable technique complementary to optical microscopy in providing feedback for capsule optimization. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 41, 461-467, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: A previous theoretical result on the subject of the acoustic radiation force on a heated sphere (Lee and Wang, 1984) is reexamined. For a more complete understanding, effects of heat transfer and acoustic streaming are taken into consideration. Essentially, it was found that, at high sound-pressure levels in a steady situation, the force is not affected significantly by the temperature profile, consistent with the result of an experimental work (Leung and Wang, 1985). This resolves the earlier apparent contradiction between the theory and the experiment. If excessive hot air is accumulated around the sphere, which can happen in transient situations, the force can be weakened or reversed in sign. A heat transfer model due to acoustic streaming was also found.
    Keywords: ACOUSTICS
    Type: Acoustical Society of America, Journal (ISSN 0001-4966); 83; 1324-133
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: The acoustic radiation force was measured for a dual-temperature resonant chamber. This rectangular chamber has its long dimension approximately 8.5 times the square cross-sectional dimension, and the opposite ends are at widely different temperatures. Force profiles were obtained for two hot end temperatures of 520 C and 760 C, while the cool end remained at approximately room temperature. Force magnitudes as high as 17 dyn for a sample 1.2 cm in diameter at 760 C and at 162-dB input level were measured.
    Keywords: ACOUSTICS
    Type: Acoustical Society of America, Journal (ISSN 0001-4966); 82; 1039-104
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: Levitation of large dense samples (e.g., 1-cm diameter steel balls) has been performed in a 1-g environment. A siren was used to study the effects of reflector geometry and variable-frequency operation in order to attain stable acoustic positioning. The harmonic content and spatial distribution of the acoustic field have been investigated. The best stability was obtained with an open reflector system, using a flat lower reflector and a slightly concave upper reflector while operating at a frequency slightly below resonance.
    Keywords: ACOUSTICS
    Type: Acoustical Society of America, Journal (ISSN 0001-4966); 83; 496-501
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A high efficiency acoustic chamber for the levitation and manipulation of liquid or molten samples in a microgravity environment has been developed. The chamber uses two acoustic drivers that are mounted at opposite corners of the chamber; by driving these at the same frequency, with 18-deg phase shifts, an increase in force of a factor of 3-4 is obtainable relative to the force of a single-driver system that is operated at the same power level. This enhancement is due to the increased coupling between the sound driver and the chamber. An anomalous rotation is noted to be associated with the chamber; this is found to be eliminated by a physically as-yet inexplicable empirical solution.
    Keywords: ACOUSTICS
    Type: AIAA PAPER 92-0114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...