ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (1)
  • Other Sources  (1)
  • ABYSS; Accession number, genetics; ARK-XXIX/2.2; Assessment of bacterial life and matter cycling in deep-sea surface sediments; beta-glucosidase activity; Cell counts, standard deviation; Chitobiase activity; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; HG_IV; Incubation duration; Multicorer with television; North Greenland Sea; Oxygen; Polarstern; Pressure; Prokaryotes, abundance as single cells; PS93/050-5/6; PS93.2; Replicates; Respiration rate, oxygen, sediment; Sample type; Station label; Treatment; TVMUC  (1)
  • Astrophysics  (1)
Collection
  • Data  (1)
  • Other Sources  (1)
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hoffmann, Katy; Hassenrück, Christiane; Salman-Carvalho, Verena; Holtappels, Moritz; Bienhold, Christina (2017): Response of bacterial communities to different detritus compositions in Arctic deep-sea sediments. Frontiers in Microbiology, 8, 266, https://doi.org/10.3389/fmicb.2017.00266
    Publication Date: 2023-03-16
    Description: In a multidisciplinary ex situ experiment, benthic bacterial deep-sea communities from 2,500 m water depth at the Long-Term Ecological Research Observatory HAUSGARTEN (stationPS93/050-5 and 6), were retrieved using a TV-guided multiple corer. Surface sediments (0 - 2 cm) of 16 cores were mixed with sterile filtered deep-sea water to a final sediment dilution of 3.5 fold. The slurries were split and supplemented with five different types of habitat-related detritus: chitin, as the most abundant biopolymer in the oceans, and four different naturally occurring Arctic algae species, i.e. Thalassiosira weissflogii, Emiliania huxleyi, Bacillaria sp. and Melosira arctica. Incubations were performed in five replicates, at in situ temperature and at atmospheric pressure, as well as at in situ pressure of 250 atm. At the start of the incubation and after 23 days, changes in key community functions, i.e. extracellular enzymatic activity, oxygen respiration and secondary production of biomass (bacterial cell numbers and biomass), were assessed along with changes in the bacterial community composition based on 16S rRNA gene and 16S rRNA Illumina sequencing. In summary, differences in community structure and in the uptake and remineralization of carbon in the different treatments suggest an effect of organic matter quality on bacterial diversity as well as on carbon turnover at the seafloor.
    Keywords: ABYSS; Accession number, genetics; ARK-XXIX/2.2; Assessment of bacterial life and matter cycling in deep-sea surface sediments; beta-glucosidase activity; Cell counts, standard deviation; Chitobiase activity; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; HG_IV; Incubation duration; Multicorer with television; North Greenland Sea; Oxygen; Polarstern; Pressure; Prokaryotes, abundance as single cells; PS93/050-5/6; PS93.2; Replicates; Respiration rate, oxygen, sediment; Sample type; Station label; Treatment; TVMUC
    Type: Dataset
    Format: text/tab-separated-values, 1540 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-23
    Description: CMB-S4 is envisioned to be the ultimate ground-based cosmic microwave background experiment, crossing critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. The CMB-S4 science case is spectacular: the search for primordial gravitational waves as predicted from inflation and the imprint of relic particles including neutrinos, unique insights into dark energy and tests of gravity on large scales, elucidating the role of baryonic feedback on galaxy formation and evolution, opening up a window on the transient Universe at millimeter wavelengths, and even the exploration of the outer Solar System. The CMB-S4 sensitivity to primordial gravitational waves will probe physics at the highest energy scales and cross a major theoretically motivated threshold in constraints on inflation. The CMB-S4 search for new light relic particles will shed light on the early Universe 10,000 times farther back than current experiments can reach. Finally, the CMB-S4 Legacy Survey covering 70% of the sky with unprecedented sensitivity and angular resolution from centimeter- to millimeter-wave observing bands will have a profound and lasting impact on Astronomy and Astrophysics and provide a powerful complement to surveys at other wavelengths, such as LSST and WFIRST, and others yet to be imagined. We emphasize that these critical thresholds cannot be reached without the level of community and agency investment and commitment required by CMB-S4. In particular, the CMB-S4 science goals are out of the reach of any projected precursor experiment by a significant margin.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN74204 , Bulletin of the American Astronomical Society (e-ISSN 0002-7537); 51; 7; 209
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...