ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ABQ  (1)
  • Cell volume regulation  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 144 (1995), S. 21-30 
    ISSN: 1432-1424
    Keywords: Epithelia ; Fluid transport ; Cl transport ; ABQ ; Fluorescence microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract We measured the Cl concentration of the lateral intercellular spaces (LIS) of MDCK cell monolayers, grown on glass coverslips, by video fluorescence microscopy. Monolayers were perfused at 37°C either with HEPES-buffered solutions containing 137 mm Cl or bicarbonate/CO2-buffered solutions containing 127 mm Cl. A mixture of two fluorescent dyes conjugated to dextrans (MW 10,000) was microinjected into domes and allowed to diffuse into the nearby LIS. The Cl sensitive dye, ABQ-dextran, was selected because of its responsiveness at high Cl concentrations; a Clinsensitive dye, Cl-NERF-dextran, was used as a reference. Both dyes were excited at 325 nm, and ratios of the fluorescence intensity at spectrally distinct emission wavelengths were obtained from two intensified CCD cameras, one for ABQ-dextran the other for Cl-NERFdextran. LIS Cl concentration was calibrated in situ by treating the monolayer with digitonin or ouabain and varying the perfusate Cl between 0 and 137 mm (HEPES buffer) or between 0 and 127 mm (bicarbonate/CO2 buffer). LIS Cl in HEPES-buffered solutions averaged 176 ± 19 mm (n = 12), calibrated with digitonin, and 170 ± 9 mm (n = 12), calibrated with ouabain. LIS Cl in bicarbonate/CO2-buffered solutions averaged 174 ± 10 mm (n = 7) using the ouabain calibration. The Cl concentration of MDCK cell domes, measured with Clsensitive microelectrodes and by microspectrofluorimetry, did not differ significantly. Images of the LIS at 3 focal planes, near the tight junction, midway and basal, failed to reveal any gradients in Cl concentration along the LIS. LIS Cl changed rapidly in response to perfusate Cl with characteristic times of 0.8 ± 0.1 min (n = 21) for Cl decrease and 0.3 ± 0.04 min (n=21) for Cl increase. In conclusion, (i) Cl concentration is higher in the LIS than in the bathing medium, (ii) no gradients of Cl along the depth of LIS are detectable, (iii) junctional Cl permeability is high.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: Gill chloride cell ; Cl− secretion ; Fundulus heteroclitus ; Cell volume regulation ; Na+/H+ exchanger ; Cl−/HCO 3 − exchanger
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Transition from low salt water to sea water of the euryhaline fish, Fundulus heteroclitus, involves a rapid signal that induces salt secretion by the gill chloride cells. An increase of 65 mOsm in plasma osmolarity was found during the transition. The isolated, chloridecell-rich opercular epithelium of sea-water-adapted Fundulus exposed to 50 mOsm mannitol on the basolateral side showed a 100% increase in chloride secretion, which was inhibited by bumetanide 10−4 m and 10−4 m DPC (N-Phenylanthranilic acid). No effect of these drugs was found on apical side exposure. A Na+/H+ exchanger, demonstrated by NH4Cl exposure, was inhibited by amiloride and its analogues and stimulated by IBMX, phorbol esters, and epithelial growth factor (EGF). Inhibition of the Na+/H+ exchanger blocks the chloride secretion increase due to basolateral hypertonicity. A Cl−/HCO 3 − exchanger was also found in the chloride cells, inhibited by 10−4 m DIDS but not involved in the hyperosmotic response. Ca2+ concentration in the medium was critical for the stimulation of Cl− secretion to occur. Chloride cell volume shrinks in response to hypertonicity of the basolateral side in sea-water-adapted operculi; no effect was found on the apical side. Freshwater-adapted fish chloride cells show increased water permeability of the apical side. It is concluded that the rapid signal for adaptation to higher salinities is an increased tonicity of the plasma that induces chloride cell shrinkage, increased chloride secretion with activation of the Na+K+2Cl− cotransporter, the Na+/H+ exchanger and opening of Cl− channels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...