ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0630
    Keywords: 41.80.Gg ; 68.55.−a ; 79.60.Eq
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Bombardment of silicon surfaces by low-energy (300–1000 eV) nitrogen ions has been investigated as a potential process for growing ultrathin films at relatively low temperatures (〈500°C). The thicknesses and chemical states of the obtained films are analysed using ellipsometry, X-ray Photoelectron Spectroscopy (XPS), and Auger Electron Spectroscopy (AES). All the analyses show that ultrathin (∽ 60 Å) silicon nitride films have been directly grown on silicon substrates. Detailed studies of the influence of different process parameters on the obtained films have been carried out. The thicknesses of the obtained films appear to increase with ion energy. The nitridation is found to be a rapid process which can be divided into two steps. The thicknesses are also observed to vary slightly with substrate temperature. The average active energy of nitridation rates is about 3.5 meV which indicates nonthermal process kinetics. For AES analysis, the films are found to be nitrogen-rich ones with the stoichiometric factor x≈1.7 larger than that of pure silicon nitride (x=1.33). In both AES and XPS studies, the chemical state of the silicon atoms resembles the existence of silicon oxynitride films of low oxygen concentration. The growth mechanism is also discussed briefly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...