ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Spacecraft Design, Testing and Performance  (2)
  • 72.20  (1)
  • DNA  (1)
  • 1
    ISSN: 0168-9452
    Keywords: DNA ; adduct ; plant ; xenobiotic
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 16 (1978), S. 381-390 
    ISSN: 1432-0630
    Keywords: 73 ; 72.20
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Indium-tin-oxide films (ITO films) sputtered in Ar-atmosphere with and without addition of oxygen reveal an irreversible increase in conductivity during annealing in vacuum. This annealing process increases drastically the density of free electrons, while the Hall mobility changes only slightly. Below the annealing temperature the temperature dependence of the conductivity is reversible. In films with low density of free electrons, which behave like non-degenerated semiconductors, two activation energies for the mobility could be found. The irreversible changes, observed during annealing in the vacuum, are explained by diffusion of oxygen from the interior of the film to the surface, followed by desorption of the oxygen from the surface into the vacuum. The excess oxygen in the non-stoichiometric films plays the role of electron traps. The irreversible effects during annealing in the vacuum are partly reversible in the long run. If the annealed films are exposed to oxygen or air their conductivity decreases because of diffusion of oxygen from the surface into the film.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This paper discusses the design and fabrication of DebriSat, a 50 kg satellite developed to be representative of a modern low Earth orbit satellite in terms of its components, materials used, and fabrication procedures. DebriSat will be the target of a future hypervelocity impact experiment to determine the physical characteristics of debris generated after an on-orbit collision of a modern LEO satellite. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was SOCIT, conducted in 1992. The target used for that experiment was a Navy transit satellite (~40 cm, 35 kg) fabricated in the 1960's. Modern satellites are very different in materials and construction techniques than those built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. To ensure that DebriSat is truly representative of typical LEO missions, a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 1 kg to 5000 kg was conducted. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions. Although DebriSat is an engineering model, specific attention is placed on the quality, type, and quantity of the materials used in its fabrication to ensure the integrity of the outcome. With the exception of software, all other aspects of the satellite s design, fabrication, and assembly integration and testing will be as rigorous as that of an actual flight vehicle. For example, to simulate survivability of launch loads, DebriSat will be subjected to a vibration test. As well, the satellite will undergo thermal vacuum tests to verify that the components and overall systems meet typical environmental standards. Proper assembly and integration techniques will involve comprehensive joint analysis, including the precise torqueing of fasteners and thread locking. Finally, the implementation of process documentation and verification procedures is discussed to provide a comprehensive overview of the design and fabrication of this representative LEO satellite.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-25994 , JSC-CN-26994 , 63rd International Astronautical Congress (lAC); Oct 01, 2012 - Oct 05, 2012; Naples; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This paper summarizes the process and methodologies used in the design of a small-satellite, DebriSat, that represents materials and construction methods used in modern day Low Earth Orbit (LEO) satellites. This satellite will be used in a future hypervelocity impact test with the overall purpose to investigate the physical characteristics of modern LEO satellites after an on-orbit collision. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was conducted in 1992. The target used for that experiment was a Navy Transit satellite (~40 cm, 35 kg) fabricated in the 1960 s. Modern satellites are very different in materials and construction techniques from a satellite built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. The design of DebriSat will focus on designing and building a next-generation satellite to more accurately portray modern satellites. The design of DebriSat included a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 10 kg to 5000 kg. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions, and helped direct the design of DebriSat.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-25897 , JSC-CN-26685 , 39th Committee on Space Research (COSPAR) Scientific Assembly; Jul 14, 2012 - Jul 22, 2012; Mysore, Karnataka; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...