ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0630
    Keywords: 61.80 ; 61.40
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Fast heavy ions produce stable defects in most dielectrica. As examples mica, Polyethylenterephtalat and Polystyrol were irradiated with Ar, Ni, Kr, Xe and U ions in an energy range from 0.5 up to 20 MeV/u. The resulting defects were investigated by neutron and x-ray small-angle scattering. The ion beam supplied by the UNILAC accelerator at GSI Darmstadt is characterized by its small emittance, the well defined mass, charge and energy of the ions and their stochastical distribution in the phase space. In scattering experiments the system of scattering centers created by these ions causes a scattered intensity distribution which strongly depends on the orientation of the sample with respect to the unscattered neutron or x-ray beam. This dependence is investigated and explained. By a mathematical model — describing form, size, and density of the average ion track — the measured intensity distribution is simulated. Based on the model, computer procedures are written, simulating the scattering experiment by varying the most important experimental and instrumental parameters and calculating the expected theoretical intensity distribution on the detector. The parameter values of this model — the maximum density difference in the track, length of the defect, and radial dimension — are determined by least square fits to the measured data. A simple description of the dependence of these parameters on the ion energy can be given in relation to the energy loss of the primary ion. It is not only possible now to predict an expected track, to calculate its volume and the number of missing atoms, but moreover to check theories of the track formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: PURPOSE: Corneas with scars and certain chronic pathologic conditions contain highly sulfated dermatan sulfate, but little is known of the core proteins that carry these atypical glycosaminoglycans. In this study the proteoglycan proteins attached to dermatan sulfate in normal and pathologic human corneas were examined to identify primary genes involved in the pathobiology of corneal scarring. METHODS: Proteoglycans from human corneas with chronic edema, bullous keratopathy, and keratoconus and from normal corneas were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), quantitative immunoblotting, and immunohistology with peptide antibodies to decorin and biglycan. RESULTS: Proteoglycans from pathologic corneas exhibit increased size heterogeneity and binding of the cationic dye alcian blue compared with those in normal corneas. Decorin and biglycan extracted from normal and diseased corneas exhibited similar molecular size distribution patterns. In approximately half of the pathologic corneas, the level of biglycan was elevated an average of seven times above normal, and decorin was elevated approximately three times above normal. The increases were associated with highly charged molecular forms of decorin and biglycan, indicating modification of the proteins with dermatan sulfate chains of increased sulfation. Immunostaining of corneal sections showed an abnormal stromal localization of biglycan in pathologic corneas. CONCLUSIONS: The increased dermatan sulfate associated with chronic corneal pathologic conditions results from stromal accumulation of decorin and particularly of biglycan in the affected corneas. These proteins bear dermatan sulfate chains with increased sulfation compared with normal stromal proteoglycans.
    Keywords: Life Sciences (General)
    Type: Investigative ophthalmology & visual science (ISSN 0146-0404); 39; 10; 1957-64
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Keratocytes of the corneal stroma produce a specialized extracellular matrix responsible for corneal transparency. Corneal keratan sulfate proteoglycans (KSPG) are unique products of keratocytes that are down-regulated in corneal wounds and in vitro. This study used cultures of primary bovine keratocytes to define factors affecting KSPG expression in vitro. KSPG metabolically labeled with [(35)S]sulfate decreased during the initial 2-4 days of culture in quiescent cultures with low serum concentrations (0.1%). Addition of fetal bovine serum, fibroblast growth factor-2 (FGF-2), transforming growth factor beta, or platelet derived growth factor all stimulated cell division, but only FGF-2 stimulated KSPG secretion. Combined with serum, FGF-2 also prevented serum-induced KSPG down-regulation. KSPG secretion was lost during serial subculture with or without FGF-2. Expression of KSPG core proteins (lumican, mimecan, and keratocan) was stimulated by FGF-2, and steady state mRNA pools for these proteins, particularly keratocan, were significantly increased by FGF-2 treatment. KSPG expression therefore is supported by exogenous FGF-2 and eliminated by subculture of the cells in presence of serum. FGF-2 stimulates KSPG core protein expression primarily through an increase in mRNA pools.
    Keywords: Life Sciences (General)
    Type: The Journal of biological chemistry (ISSN 0021-9258); 275; 18; 13918-23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...