ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Phytoplankton  (2)
  • 577.7  (1)
  • Acartia sp., nauplii; Copepoda; Copepoda, adult; Copepodites; DATE/TIME; Eggs; Eurytemora sp., nauplii; Experiment day; Kiel_Bight_2016; Kieler Bucht; MESO; Mesocosm experiment; Mesocosm label; Nauplii; Treatment  (1)
  • Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbon, inorganic, particulate, per cell; Carbon, inorganic, particulate, population yield; Carbon, organic, particulate, per cell; Carbon, organic, particulate, population yield; Carbon, organic, particulate/Nitrogen, organic, particulate ratio; Carbon, organic, particulate/Phosphorus, organic, particulate ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Emiliania huxleyi; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Haptophyta; Laboratory experiment; Macro-nutrients; Nitrogen, organic, particulate, per cell; Nitrogen, organic, particulate/Phosphorus, organic, particulate ratio; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Particulate inorganic carbon/particulate organic carbon ratio; Particulate inorganic carbon production per cell; Particulate organic carbon production per cell; pH; Phosphorus, organic, particulate, per cell; Phytoplankton; Registration number of species; Salinity; Single species; Species; Treatment: nutrients; Treatment: partial pressure of carbon dioxide; Treatment: temperature; Type; Uniform resource locator/link to reference
  • Nutrients
Collection
Keywords
Publisher
Language
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 93 (1993), S. 276-284 
    ISSN: 1432-1939
    Keywords: Phytoplankton ; Recovery from eutrophication ; Species composition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In Lake Constance, after several decades of cutrophication, a decrease in phosphorus loading over the last decade has lead to a partial recovery from eutrophication. Here we analyse the shift in the taxonomic composition of phytoplankton during the first decade of oligotrophication in Lake Constance. During the 1980s, spring total P concentrations decreased from ca. 130 to less than 50 μ·l−1. This decrease was reflected by an approximately proportional decrease in summer phytoplankton biomass while spring phytoplankton biomass seemed unresponsive. Major taxonomic changes occured during both growth seasons. In spring, the proportion of diatoms, green algae and Chrysophyta increased while the proportion of Cryptophyta decreased. The summer trend was very different: the relative importance of diatoms decreased and Cryptophyta and Chrysophyta increased, while Chlorophyta reached their peak around 1985. These trends are also analysed at the genus level. Comparison with taxonomic trends during the eutrophication period shows the expected reversals in most cases. Comparison with other lakes shows general similarities, with the notable exception that Planktothrix rubescens has never been important in Lake Constance. The increase of diatoms during spring is attributed to their improved competitive performance with increasing Si:P ratios. Their decrease during summer is explained by the increasing silicate removal from the epilimnion by increasing spring populations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 77 (1988), S. 464-467 
    ISSN: 1432-1939
    Keywords: Antarctic phytoplankton ; Competition ; Resource ratios ; Nutrients
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary An attempt was made, to test for the impact of resource competition on Antarctic marine phytoplankton. According to theory, species composition near competitive equilibrium should be determined by the ratios of limiting resources. Enrichment bioassays identified silicon and nitrogen as limiting nutrients for some of the most important phytoplankton species during early austral summer in the region near the Antarctic Peninsula. Together with the generally acknowledged limiting resource light, this gave three meaningful ratios of essential resources (Si:N, Si:light, N:light) and one ratio of substitutable resources (NO3:NH4). Phytoplankton species assemblages were found to be well separated by the ratios of the essential resources and by mixing depth. Nine out of 12 individual species were found to be separated along at least one of the gradients of resource ratios. Where comparison with competition experiments was available, predicted and realized distributions of species were compatible.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 87 (1991), S. 171-179 
    ISSN: 1432-1939
    Keywords: Phytoplankton ; Zooplankton ; Microcosm Succession ; Competition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Different initial mixtures of phyto-and zooplankton from different lakes were grown under identical chemical and physical conditions in medium size (8-and 12–1) laboratory microcosm cultures until convergence of phytoplankton species composition was attained. Five such experiments with four (four experiments) or three (one experiment) microcosm cultures were run. Three experiments were performed with weak stirring which permitted sedimentary elimination of the diatoms. Two experiments were conducted with stronger stirring to prevent sedimentation. In the three “sedimentation intensive” experiments, the final phytoplankton community was composed of the filamentous chlorophyte Mougeotia thylespora together with a smaller biomass of nanoplanktic algae. In the two “sedimentation free” experiments the final phytoplankton community consisted of pennate diatoms. Both dissolved nutrient concentrations and the chemical composition of biomass suggested strong nutrient limitation of algal growth rates in the final phase of the experiments. The zooplankton communities at the end of the experiments were composed of species that were apparently unable to ingest the large, dominant algae and that presumably fed on the nanoplanktic “undergrowth” and the bacteria. There was a distinct sequence of events in all experiments: first, the large zooplankton species (Daphnia and Copepoda) were replaced by smaller ones (Chydorus, Bosmina, rotifers); second, all cultures within one experiment developed the same nutritional status (limitation by the same nutrient); and third, the taxonomic composition of phytoplankton of the different cultures within one experiment converged. The last took 7–9 weeks, with is about 2–3 times as long as the time needed in a phytoplankton competition experiment to reach the final outcome.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-11-03
    Description: Gelatinous zooplankton can be present in high biomass and taxonomic diversity in planktonic oceanic food webs, yet the trophic structuring and importance of this “jelly web” remain incompletely understood. To address this knowledge gap, we provide a holistic trophic characterization of a jelly web in the eastern tropical Atlantic, based on δ13C and δ15N stable isotope analysis of a unique gelatinous zooplankton sample set. The jelly web covered most of the isotopic niche space of the entire planktonic oceanic food web, spanning 〉 3 trophic levels, ranging from herbivores (e.g., pyrosomes) to higher predators (e.g., ctenophores), highlighting the diverse functional roles and broad possible food web relevance of gelatinous zooplankton. Among gelatinous zooplankton taxa, comparisons of isotopic niches pointed to the presence of differentiation and resource partitioning, but also highlighted the potential for competition, e.g., between hydromedusae and siphonophores. Significant differences in spatial (seamount vs. open ocean) and depth-resolved patterns (0–400 m vs. 400–1000 m) pointed to additional complexity, and raise questions about the extent of connectivity between locations and differential patterns in vertical coupling between gelatinous zooplankton groups. Added complexity also resulted from inconsistent patterns in trophic ontogenetic shifts among groups. We conclude that the broad trophic niche covered by the jelly web, patterns in niche differentiation within this web, and substantial complexity at the spatial, depth, and taxon level call for a more careful consideration of gelatinous zooplankton in oceanic food web models. In light of climate change and fishing pressure, the data presented here also provide a valuable baseline against which to measure future trophic observations of gelatinous zooplankton communities in the eastern tropical Atlantic.
    Keywords: 577.7 ; eastern tropical Atlantic ; gelatinous zooplankton ; isotopic pattern ; food web characterization
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-08-30
    Description: Phytoplankton, microzooplankton, copepod and dissolved nutrient data from a mesocosm experiment, which took place in summer 2016. A range of Si:N ratios and two levels of copepod grazing pressure were manipulated on a natural plankton community in Kiel Bay, Southern Baltic Sea, Germany.
    Keywords: Acartia sp., nauplii; Copepoda; Copepoda, adult; Copepodites; DATE/TIME; Eggs; Eurytemora sp., nauplii; Experiment day; Kiel_Bight_2016; Kieler Bucht; MESO; Mesocosm experiment; Mesocosm label; Nauplii; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 220 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...