ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 577.7  (1)
  • Abundance per volume; Alkalinity, total; Aragonite saturation state; Baltic Sea; Bay of Kiel, Baltic Sea; Bicarbonate ion; Biomass; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Day of experiment; Entire community; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Kiel_Bight; Laboratory experiment; Mesocosm or benthocosm; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Ratio; Salinity; Sample code/label; Size fraction; Temperate; Temperature; Temperature, water; Treatment; Type  (1)
  • Acartia sp., nauplii; Copepoda; Copepoda, adult; Copepodites; DATE/TIME; Eggs; Eurytemora sp., nauplii; Experiment day; Kiel_Bight_2016; Kieler Bucht; MESO; Mesocosm experiment; Mesocosm label; Nauplii; Treatment  (1)
  • Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbon, inorganic, particulate, per cell; Carbon, inorganic, particulate, population yield; Carbon, organic, particulate, per cell; Carbon, organic, particulate, population yield; Carbon, organic, particulate/Nitrogen, organic, particulate ratio; Carbon, organic, particulate/Phosphorus, organic, particulate ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Emiliania huxleyi; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Haptophyta; Laboratory experiment; Macro-nutrients; Nitrogen, organic, particulate, per cell; Nitrogen, organic, particulate/Phosphorus, organic, particulate ratio; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Particulate inorganic carbon/particulate organic carbon ratio; Particulate inorganic carbon production per cell; Particulate organic carbon production per cell; pH; Phosphorus, organic, particulate, per cell; Phytoplankton; Registration number of species; Salinity; Single species; Species; Treatment: nutrients; Treatment: partial pressure of carbon dioxide; Treatment: temperature; Type; Uniform resource locator/link to reference
  • Nutrients
Collection
Keywords
Publisher
Language
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 77 (1988), S. 464-467 
    ISSN: 1432-1939
    Keywords: Antarctic phytoplankton ; Competition ; Resource ratios ; Nutrients
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary An attempt was made, to test for the impact of resource competition on Antarctic marine phytoplankton. According to theory, species composition near competitive equilibrium should be determined by the ratios of limiting resources. Enrichment bioassays identified silicon and nitrogen as limiting nutrients for some of the most important phytoplankton species during early austral summer in the region near the Antarctic Peninsula. Together with the generally acknowledged limiting resource light, this gave three meaningful ratios of essential resources (Si:N, Si:light, N:light) and one ratio of substitutable resources (NO3:NH4). Phytoplankton species assemblages were found to be well separated by the ratios of the essential resources and by mixing depth. Nine out of 12 individual species were found to be separated along at least one of the gradients of resource ratios. Where comparison with competition experiments was available, predicted and realized distributions of species were compatible.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-11-03
    Description: Gelatinous zooplankton can be present in high biomass and taxonomic diversity in planktonic oceanic food webs, yet the trophic structuring and importance of this “jelly web” remain incompletely understood. To address this knowledge gap, we provide a holistic trophic characterization of a jelly web in the eastern tropical Atlantic, based on δ13C and δ15N stable isotope analysis of a unique gelatinous zooplankton sample set. The jelly web covered most of the isotopic niche space of the entire planktonic oceanic food web, spanning 〉 3 trophic levels, ranging from herbivores (e.g., pyrosomes) to higher predators (e.g., ctenophores), highlighting the diverse functional roles and broad possible food web relevance of gelatinous zooplankton. Among gelatinous zooplankton taxa, comparisons of isotopic niches pointed to the presence of differentiation and resource partitioning, but also highlighted the potential for competition, e.g., between hydromedusae and siphonophores. Significant differences in spatial (seamount vs. open ocean) and depth-resolved patterns (0–400 m vs. 400–1000 m) pointed to additional complexity, and raise questions about the extent of connectivity between locations and differential patterns in vertical coupling between gelatinous zooplankton groups. Added complexity also resulted from inconsistent patterns in trophic ontogenetic shifts among groups. We conclude that the broad trophic niche covered by the jelly web, patterns in niche differentiation within this web, and substantial complexity at the spatial, depth, and taxon level call for a more careful consideration of gelatinous zooplankton in oceanic food web models. In light of climate change and fishing pressure, the data presented here also provide a valuable baseline against which to measure future trophic observations of gelatinous zooplankton communities in the eastern tropical Atlantic.
    Keywords: 577.7 ; eastern tropical Atlantic ; gelatinous zooplankton ; isotopic pattern ; food web characterization
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-08-30
    Description: Phytoplankton, microzooplankton, copepod and dissolved nutrient data from a mesocosm experiment, which took place in summer 2016. A range of Si:N ratios and two levels of copepod grazing pressure were manipulated on a natural plankton community in Kiel Bay, Southern Baltic Sea, Germany.
    Keywords: Acartia sp., nauplii; Copepoda; Copepoda, adult; Copepodites; DATE/TIME; Eggs; Eurytemora sp., nauplii; Experiment day; Kiel_Bight_2016; Kieler Bucht; MESO; Mesocosm experiment; Mesocosm label; Nauplii; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 220 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-15
    Description: We studied the response of the heterotrophic flagellate (HF) community to the combined impact of warming and ocean acidification in a mesocosm experiment with a plankton community from the western Baltic Sea. We performed a quantitative analysis of the response at the level of total biomass and size classes and a semi-quantitative one at the level of individual taxa. Total biomass of HF was significantly lower under higher temperatures while there was no significant effect of CO2. The mean biomass of the picoflagellates did not respond to temperature while the three nanoflagellate size classes (class limits 3, 5, 8, 15 ?m) responded negatively to warming while not responding to CO2. The taxon-level results indicate that heterotrophic flagellates do not form a homogenous trophic guild, as often assumed in pelagic food web studies. Instead, the heterotrophic flagellates formed a ?food web within the food web?. There was a pronounced succession of flagellates leading from a dominance of bacterivores and colloidal matter feeders before the phytoplankton bloom to omnivorous feeders preying upon phytoplankton and heterotrophic flagellates during and after the bloom. This complex intraguild predation patterns probably dampened the response to experimental treatments.
    Keywords: Abundance per volume; Alkalinity, total; Aragonite saturation state; Baltic Sea; Bay of Kiel, Baltic Sea; Bicarbonate ion; Biomass; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Day of experiment; Entire community; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Kiel_Bight; Laboratory experiment; Mesocosm or benthocosm; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Ratio; Salinity; Sample code/label; Size fraction; Temperate; Temperature; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 11746 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...