ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • Biogenes Sediment  (2)
  • 554.3  (1)
  • 1
    facet.materialart.
    Unknown
    Dteutsche Gesellschaft für Geowissenschaften, Hannover
    Publication Date: 2021-03-29
    Description: The Nördlinger Ries is a circular, flat depression of 22-24 km diameter separating the Jurassic limestone plateaus of the Franconian and Swabian Alb in Southwest-Germany. Its centre is located 110 km NW of Munich, 70 km SSW of Nuremberg and 110 km E of Stuttgart. The Ries basin was formed approximately 15 Million years ago (Gentner & Wagner, 1969; Staudacher et al., 1982) by an impact of a stony meteorite less than 1 km in size (Shoemaker & Chao, 1961; Stöffler, 1977). The Ries crater represents one of the best preserved and best investigated impact structures on Earth (Bayerisches Geologisches Landesamt 1969, 1974, 1977; Hüttner & Schmidt-Kaler 1999; Stöffler & Ostertag 1983). It gained wide public attention (e.g., Metz 1974, Steinert 1974, Lemcke 1981, Kavasch 1985, Pösges & Schieber 1994; Schieber 2004) and served as training site for Apollo 17 astronauts in August 1970 (e.g., Margolin 2000). However, apart from its impact nature, the Ries basin offers a great opportunity to study fossil lacustrine microbialites. Such lacustrine deposits within impact structures are of increasing interest for understanding the origin and evolution of early life on Earth, and possibly other planets (Cockell & Lee 2002, Osinski et al. 2005, Cabrol et al. 2001). Therefore, the focus on this field trip is on microbial and algal build-ups, their facies context, and the discussion of microbial effects and lake water chemistry.
    Description: excursionguide
    Keywords: 551 ; VKB 380 ; VEB 147 ; VDI 121 ; VKB 376 ; VAE 150 ; Sedimente bestimmter Regionen ; Schwäbische Alb und Fränkische Alb {Geologie} ; Miozän ; Organogene Sedimentgesteine ; Strukturelle Erscheinungen {Strukturgeologie} ; Ries ; Geologie ; Geologie ; Seesediment ; Biogenes Sediment ; 38.44 ; 38.28
    Language: English
    Type: article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-29
    Description: Das Profil Neumarkt-Fuchsberg umfaßt eine 25 m mächtige Sedimentabfolge von flach-subtidalen Sandsteinen des tieferen Bajocium bis zu einer Kalk-Mergel-Wechselfolge des höheren Oxfordium mit Schwamm-Mikrobialithen in mittlerer Schelfposition. Anhand der Ammonitenfauna können die Humphriesianum-, Parkinsoni-, Koenigi-, Jason-, Lamberti- und Bifurcatus- Zone belegt werden. Sedimente weiterer Ammoniten-Zonen sind einer lithostratigraphischen Korrelation mit dem benachbarten Profil Sengenthal folgend vertreten. Nur für das Ober-Bathonium bis tiefste Unter-Callovium (Herveyi-Zone) ist biostratigraphisch eine Schichtlücke belegt. Die Mikrofazies der Sedimente spiegelt die zunehmende Küstenentfernung und Umformung der Paläogeographie mit Durchbruch der Regensburger Straße, veränderten Meeresströmungen und zunehmender Öffnung zur Tethys wider. Eine schrittweise Zunahme der Wassertiefe ist anzunehmen. Mächtigkeitsschwankungen im Bajocium-Bathonium gehen auf die Nivellierung einer submarinen erosiven Reliefbildung im untersten Bajocium an der Grenze "Eisensandstein"/"Sowerbyi- Sauzei-Schichten" zurück. Eisenooide sind keine Bildungen des bewegten Flachwassers sondern entstanden bei geringer Wasserbewegung nahe der Sedimentoberfläche. Diskontinuitäten und Kondensationshorizonte im Mittleren und Oberen Braunjura werden auf transgressive Phasen und Meeresspiegelhochstände zurückgeführt. Im Falle der Parkinsoni- bis tieferen Zigzag-Zone, der tiefern Koenigi-Zone und der Lamberti-Zone fallen sie zeitlich mit eustatischen Meeresspiegelhochständen zusammen. Späte Abschnitte transgressiver Phasen bzw. Meeresspiegelhochstände sind zudem mit Phasen der Phosphoritknollen-Bildung verbunden. Eine Regression ist nur für die späte Sauzei-/frühe Humphriesianum-Zone gesichert. Der Wechsel von einer Limonit- zu Glaukonit- charakterisierten Sedimentation fällt mit dem Durchbruch der Regensburger Straße während des Unter-Callovium zusammen.
    Description: A 25 m thick section of shallow-subtidal early Bajocian sandstones to early Oxfordian limestone-marl-alternations with sponge-microbialite-buildups of the middle shelf has been investigated at Neumarkt i.d.Opf. (Franconian Alb, Bavaria). The ammonoid faunas prove the presence of the Humphriesianum-, Parkinsoni-, Koenigi-, Jason-, Lamberti- und Bifurcatus-Zone. Further ammonite zones should be present as derived from correlation with the adjacent section Sengenthal. A biostratigraphic gap is evident only for the Upper Bathonian to the early Lower Callovian. The microfacies of the sediments reflects the increasing distance to the coast and a change in palaeogeography including the connection of the south German and Polish seas by the Regensburg strait, change in currents and a progressive opening to the Tethys. A step-by-step increase in water depth is suggested. Changes in thickness of the Bajocian-Bathonian at short distances result from a submarine erosional relief formed during the lowermost Bajocian. Iron ooids probably formed at the sediment-water interface in an poorly agitated environment. Disconformities and condensations in the early Bajocian to early Oxfordian are considered to result from transgressive pulses and sea-level highstands. In the case of the Parkinsoni- to early Zigzag-Zone, the early Koenigi-Zone and the Lamberti-Zone these condensations coincide with eustatic sealevel highstands. In addition, late parts of transgressive pulses and sea-level highstands are characterized by the formation of phosphorite. A regression is only indicated for the late Sauzei/ early Humphriesianum-Zone. The change from limonite- to glaucony in sedimentation coincides with the opening of the Regensburg strait during the Lower Callovian.
    Description: research
    Keywords: 560 ; VDH 220 ; VEB 212 ; VEB 148 ; VKB 340 ; VXM 000 ; VWH 200 ; Mittlerer Jura ; Bayern {Geologie} ; Oberfränkisch-oberpfälzisches Schollenland {Geologie} ; Fazieskunde ; Mollusca {Paläozoologie} ; Jura {Stratigraphische Paläontologie} ; Fränkische Alb ; Dogger ; Ammonoidea ; Biogenes Sediment ; 38.16 ; 38.28 ; 38.22
    Language: German
    Type: article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-21
    Description: Since its recognition as an impact structure 60 years ago, no volcanics were anticipated in the circular depression of the 14.8 Ma old Nördlinger Ries. Here, we describe for the first time a volcanic ash‐derived clinoptilolite‐heulandite‐buddingtonite bed within the 330 m thick Miocene lacustrine crater fill. Zircon U‐Pb ages of 14.20 ± 0.08 Ma point to the source of the volcanic ash in the Pannonian Basin, 760 km east of the Ries. The diagenetically derived zeolite‐feldspar bed occurs in laminated claystones of the Ries soda‐lake stage and represents the first unequivocal stratigraphic marker bed in this basin, traceable from marginal surface outcrops to 218 m below surface in the crater center. These relationships demonstrate a deeply bowl‐shaped geometry of crater fill sediments, not explainable by sediment compaction and corresponding stratigraphic backstripping alone. Since most of the claystones formed at shallow water depths, the bowl‐shaped geometry must reflect 134 +23/−49 m of sagging of the crater floor. We attribute the sagging to compaction and closure of the dilatant macro‐porosity of the deeply fractured and brecciated crater floor during basin sedimentation and loading, a process that lasted for more than 0.6 Myr. As a result, the outcrop pattern of the lithostratigraphic crater‐fill units in its present erosional plane forms a concentric pattern. Recognition of this volcanic ash stratigraphic marker in the Ries crater provides insights into the temporal and stratigraphic relationships of crater formation and subsidence that have implications for impact‐hosted lakes on Earth and Mars.
    Description: Plain Language Summary: We describe for the first time a volcanic ash layer from the lake sediment fill of the 14.8 million years old asteroid impact crater Nördlinger Ries. Radiometric age and trace element characteristics of this ash layer are identical to that of a volcanic field in Hungary, so that the ash reflects a volcanic eruption 760 km east of the Ries basin. Recognition of this ash layer enables its use as a marker bed. The ash layer can be traced from surface outcrops to 218 m depth in drillings. This indicates that the strata are significantly inclined toward the crater center. Calculations of sediment compaction by further sediment load and burial only partially explain the observed deeply bowl‐shaped geometry. We attribute the additional sagging to the subsidence of the crater floor substrate, formed of rocks highly shattered by the impact event. Both effects cause a concentric pattern of outcropping strata in the partially eroded crater fill. The presence of the ash layer and its use to help disentangle the source and timing of subsidence (due to compaction of lake sediments, and closure of deeper, impact‐induced fractures), has important implications for lakes formed in impact craters on Earth and Mars.
    Description: Key Points: A critical question in the evolution of impact‐crater‐hosted lakes is the origin and timing of post‐impact floor subsidence We describe a volcanic ash layer from the Ries impact crater that demonstrates a deeply bowl‐shaped geometry of its lacustrine crater fill This geometry, leading to a concentric outcrop pattern, requires significant crater floor sagging, in addition to sediment compaction
    Description: German Research Foundation
    Description: Chinese Scholarship Council
    Description: Bolyai J. Research Fellowship
    Keywords: 554.3 ; impact structure ; sediment basin ; subsidence ; volcanic ash
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...