ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-05
    Description: On April 23, 2019, a meteorite fall occurred in Aguas Zarcas, Costa Rica. According to the Meteoritical Bulletin, Aguas Zarcas is a brecciated CM2 chondrite dominated by two lithologies. Our X‐ray computed tomography (XCT) results show many different lithologies. In this paper, we describe the petrographic and mineralogical investigation of five different lithologies of the Aguas Zarcas meteorite. The bulk oxygen isotope compositions of some lithologies were also measured. The Aguas Zarcas meteorite is a breccia at all scales. From two small fragments, we have noted five main lithologies, including (1) Met‐1: a metal‐rich lithology; (2) Met‐2: a second metal‐rich lithology which is distinct from Met‐1; (3) a brecciated CM lithology with clasts of different petrologic subtypes; (4) a C1/2 lithology; and (5) a C1 lithology. The Met‐1 lithology is a new and unique carbonaceous chondrite which bears similarities to CR and CM chondrite groups, but is distinct from both based on oxygen isotope data. Met‐2 also represents a new type of carbonaceous chondrite, but it is more similar to the CM chondrite group, albeit with a very high abundance of metal. We have noted some similarities between the Met‐1 and Met‐2 lithologies and will explore possible genetic relationships. We have also identified a brecciated CM lithology with two primary components: a chondrule‐poor lithology and a chondrule‐rich lithology showing different petrologic subtypes. The other two lithologies, C1 and C1/2, are very altered and possibly related to the CM chondrite group. In this article, we describe all the lithologies in detail and attempt a classification of each in order to understand the origin and the history of formation of the Aguas Zarcas parent body.
    Description: ProjektDEAL
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Japan Society for the Promotion of Science http://dx.doi.org/10.13039/501100001691
    Keywords: 552.6 ; carbonaceous chondrite ; Costa Rica
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Second Post-Retrieval Symposium, Part 2; p 541-549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: This report focuses on the data acquired by detailed examination of LDEF intercostals, 68 of which are now in possession of the Meteoroid and Debris Special Investigation Group (M&D SIG) at JSC. In addition, limited data will be presented for several small sections from the A0178 thermal control blankets that were examined/counted prior to being shipped to Principal Investigators (PI's) for scientific study. The data presented here are limited to measurements of crater and penetration-hole diameters and their frequency of occurrence which permits, yet also constrains, more model-dependent, interpretative efforts. Such efforts will focus on the conversion of crater and penetration-hole sizes to projectile diameters (and masses), on absolute particle fluxes, and on the distribution of particle-encounter velocities. These are all complex issues that presently cannot be pursued without making various assumptions which relate, in part, to crater-scaling relationships, and to assumed trajectories of natural and man-made particle populations in LEO that control the initial impact conditions.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Second Post-Retrieval Symposium, Part 2; p 313-324
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: The preliminary results from attempts to derive depth and diameter information from digitized stereo images of impact features on the LDEF are reported. Contrary to our prior assumption, we find that impact craters in the T6 A1 alloy are not paraboloid in cross section, but rather are better described by a 6th-order polynomial curve. We explore the implications of this discovery.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Second Post-Retrieval Symposium, Part 2; p 339-345
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: All craters greater than or equal to 500 microns and penetration holes greater than or equal to 300 microns in diameter on the entire Long Duration Exposure Facility (LDEF) were documented. Summarized here are the observations on the LDEF frame, which exposed aluminum 6061-T6 in 26 specific directions relative to LDEF's velocity vector. In addition, the opportunity arose to characterize the penetration holes in the A0178 thermal blankets, which pointed in nine directions. For each of the 26 directions, LDEF provided time-area products that approach those afforded by all previous space-retrieved materials combined. The objective here is to provide a factual database pertaining to the largest collisional events on the entire LDEF spacecraft with a minimum of interpretation. This database may serve to encourage and guide more interpretative efforts and modeling attempts.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. First Post-Retrieval Symposium, Part 1; p 477-486
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: Since the return of the Long Duration Exposure Facility (LDEF) in January, 1990, members of the Meteoroid and Debris Special Investigation Group (M&D SIG) at the Johnson Space Center (JSC) in Houston, Texas have been examining LDEF hardware in an effort to expand the knowledge base regarding the low-Earth orbit (LEO) particulate environment. In addition to the various investigative activities, JSC is also the location of the general Meteoroid & Debris database. This publicly accessible database contains information obtained from the various M&D SIG investigations, as well as limited data obtained by individual LDEF Principal Investigators. LDEF exposed approximately 130 m(exp 2) of surface area to the LEO particulate environment, approximately 15.4 m(exp 2) of which was occupied by structural frame components (i.e., longerons and intercoastals) of the spacecraft. The data reported here was obtained as a result of detailed scans of LDEF intercoastals, 68 of which reside at JSC. The limited amount of data presently available on the A0178 thermal control blankets was reported last year and will not be reiterated here. The data presented here are limited to measurements of crater diameters and their frequency of occurrence (i.e., flux).
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 1; p 257-273
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The Long Duration Exposure Facility (LDEF) was placed in low Earth orbit (LEO) in 1984 and was recovered 5.7 years later. The LDEF was host to several individual experiments that were specifically designed to characterize critical aspects of meteoroid and debris environment in LEO. It was realized from the beginning, however, that the most efficient use of the satellite would be to examine the entire surface of the Earth for impact features. In this regard, particular interest has centered on common exposed materials that faced in all LDEF pointing directions. Among the most important of these materials is the tray clamps. Therefore, in an effort to understand the nature of particulates in LEO and their effects on spacecraft hardware better, we are analyzing residues found in impact features on LDEF tray clamp surfaces. This catalog presents all data from clamps from Bay A of the LDEF. Subsequent catalogs will include clamps from succeeding bays of the satellite.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: NASA-TM-104759 , S-708 , NAS 1.15:104759
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...