ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-07-29
    Description: A concomitant effect of a hydraulic fracturing experimenting is frequently fluid permeation into the rock matrix, with the injected fluid permeating through the porous rock matrix (leak-off) rather than contributing to the buildup of borehole pressure, thereby slowing down or impeding the hydro-fracturing process. Different parameters, such as low fluid viscosity, low injection rate and high rock permeability, contribute to fluid permeation. This effect is particularly prominent in highly permeable materials, therefore, making sleeve fracturing tests (where an internal jacket separates the injected fluid in the borehole from the porous rock matrix) necessary to generate hydraulic fractures. The side effect, however, is an increase in pressure breakdown, which results in higher volume of injected fluid and in higher seismic activity. To better understand this phenomenon, we report data from a new comparative study from a suite of micro-hydraulic fracturing experiments on highly permeable and on low-permeability rock samples. Experiments were conducted in both sleeve fracture and direct fluid fracture modes using two different injection rates. Consistent with previous studies, our results show that hydraulic fracturing occurred only with low permeation, either due to the intrinsic low permeability or due to the presence of an inner silicon rubber sleeve. In particular, due to the presence of quasi-impermeable inner sleeve or borehole skin in the sleeve fracturing experiment, fracturing occurs, with the breakdown pressure supporting the linear elastic approach considering poroelastic effects, therefore, with low stress drop and consequently low microseismicity. Rock matrix permeability also controls the presence of precursory Acoustic Emission activity, as this is linked to the infiltration of fluids and consequent expansion of the pore space. Finally, permeability is shown to mainly control fracturing speed, because the permeation of fluid into the newly created fracture via the highly permeable rock matrix slows down its full development. The application of these results to the field may help to reduce induced seismicity and to conduct well stimulation in a more efficient way.
    Description: Petroleum Technology Development Fund http://dx.doi.org/10.13039/501100009614
    Description: Niedersächsische Ministerium für Wissenschaft und Kultur (DE)
    Description: Georg-August-Universität Göttingen (1018)
    Keywords: ddc:550.724 ; Permeability ; Hydraulic fracturing ; Acoustic emissions ; Fracture propagation speed ; Fluid permeation ; Leak-off
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-29
    Description: The effects of carbonate concentration and the presence of iron hydroxide phases on uranium release into the environment were investigated under oxic conditions and in the pH range from 6 to 9. For this purpose not-shaken batch experiments were conducted with a constant amount (8, 10 or 40 g/l) of a uranium bearing rock and different types of water (deionised, tap and mineral water). For comparison parallel experiments were conducted with 0.1 M Na 2 CO 3 and 0.1 M H 2 SO 4 . The use of dolomite confirmed the favourable role of carbonate bearing minerals for U transport while the presence of pyrite on Uranium mobilisation was shown to be considerably more complex. This study shows that the approach of equilibrium conditions can be strongly delayed by sorption processes.
    Description: research
    Keywords: 551.9 ; VJF 000 ; Umweltgeochemie insgesamt
    Language: German
    Type: article , publishedVersion
    Format: 29 S.
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-29
    Description: Zerovalent iron (ZVI) has been proposed as reactive material in permeable in situ walls for contaminated groundwater. An economically feasible ZVI-based reactive wall requires cheap but efficient iron materials. From an uranium treatability study and results of iron dissolution in 0.002 M EDTA by five selected ZVI materials, it is shown that current research and field implementation is not based on a rational selection of application-specific iron metal sources. An experimental procedure is proposed which could enable a better material characterization. This procedure consists of mixing ZVI materials and reactive additives, including contaminant releasing materials (CRMs), in long-term batch experiments and characterizing the contaminant concentration over the time.
    Description: Keywords: iron, redox reactions, uranium water, treatment
    Description: research
    Keywords: 551.9 ; VJF 000 ; Umweltgeochemie insgesamt
    Language: English
    Type: article , publishedVersion
    Format: 17 S.
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...