ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 551  (1)
  • ACROSS; Advanced Remote Sensing – Ground-Truth Demo and Test Facilities; Alfred-Wegener-Institute; BAH; Chlorophyll a; Chlorophyll a, confidence value; Coastal Observing System for Northern and Arctic Seas; COSYNA; DATE/TIME; Helgoland, North Sea; Helgoland-UWO; Helmholtz-Zentrum Geesthacht, Institute of Coastal Research; HZG; in situ data; JERICO; MarGate; MarGate underwater experimental area; Modular Observation Solutions for Earth Systems; MOSES; OBSE; Observation; Observatory; Oxygen saturation; Oxygen saturation, confidence value; Salinity; Salinity, confidence value; Scientific diving; See further details: Metadata for the Helgoland underwater observatory; Shelf Seas Systems Ecology @ AWI (former Biologische Anstalt Helgoland); Temperature, water; Temperature, water, confidence value; Towards a joint European research infrastructure network for coastal observatories; Turbidity, confidence value; Turbidity (Formazin Turbidity Unit)  (1)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-06-03
    Description: The dataset contains temperature, salinity, oxygen saturation and turbidity data from the Helgoland MarGate underwater observatory from the year 2014 in a temporal resolution of 1 hour. The cabled observatory is located in 10m water depth and comprises single or multiple sensors for a specific parameter (see https://www.awi.de/en/science/biosciences/shelf-sea-system-ecology/main-research-focus/cosyna/underwater-node-helgoland.html). For a detailed description of the data see associated metadatafile metadata_heluwobs_2014_hydrography.pdf
    Keywords: ACROSS; Advanced Remote Sensing – Ground-Truth Demo and Test Facilities; Alfred-Wegener-Institute; BAH; Chlorophyll a; Chlorophyll a, confidence value; Coastal Observing System for Northern and Arctic Seas; COSYNA; DATE/TIME; Helgoland, North Sea; Helgoland-UWO; Helmholtz-Zentrum Geesthacht, Institute of Coastal Research; HZG; in situ data; JERICO; MarGate; MarGate underwater experimental area; Modular Observation Solutions for Earth Systems; MOSES; OBSE; Observation; Observatory; Oxygen saturation; Oxygen saturation, confidence value; Salinity; Salinity, confidence value; Scientific diving; See further details: Metadata for the Helgoland underwater observatory; Shelf Seas Systems Ecology @ AWI (former Biologische Anstalt Helgoland); Temperature, water; Temperature, water, confidence value; Towards a joint European research infrastructure network for coastal observatories; Turbidity, confidence value; Turbidity (Formazin Turbidity Unit)
    Type: Dataset
    Format: text/tab-separated-values, 52738 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-04
    Description: Narrow baroclinic fronts are observed in the surface mixed layer (SML) of the Baltic Sea following an autumn storm. The fronts are subjected to hydrodynamic instabilities that lead to submesoscale and turbulent motions while restratifying the SML. We describe observations from an ocean glider that combines currents, stratification, and turbulence microstructure in a high horizontal resolution (150–300 m) to analyze such fronts. The observations show that SML turbulence is strongly modulated by frontal activity, acting as both source and sink for turbulent kinetic energy. In particular, a direct route to turbulent dissipation within the front is linked to shear instability caused by elevated nongeostrophic shear. The turbulent dissipation of frontal kinetic energy is large enough that it could be a significant influence in the evolution of the front and demonstrates that small‐scale turbulence can act as a significant sink of submesoscale kinetic energy.
    Description: Key Points: An autonomous ocean glider observed turbulence, currents, and stratification in surface mixed layer submesoscale fronts following a storm. Submesoscale fronts provide both a damping and generation of surface mixed layer turbulence. Shear instability within the front could represent a significant energy transfer in frontal evolution.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100001656
    Keywords: 551 ; ocean turbulence ; submesoscales ; physical oceanography ; ocean mixing
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...