ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-12
    Description: Plinian and Ignimbrite deposits represent explosive activity (ca. 17-19 cal ka) within the predominantly effusive and mildly explosive (Strombolian) volcanic history of Mount Etna (Italy). Proximal glasses from the Biancavilla Ignimbrites and Unit D Plinian fall deposits are characterised. Fall deposits recorded at Acireale (D1b and D2b) and Giarre (D1a and D2a) are geochemically distinct confirming they relate to different eruptions. The Acireale Plinian fall (D1b and D2b) deposits compositionally overlap with the Biancavilla Ignimbrite deposits. These explosive eruptions from Etna are considered responsible for widespread ash dispersals throughout the central Mediterranean region, producing the marker tephra layers (Y-1/Et-1) recorded in marine and lacustrine sedimentary archives. Stratigraphically these distal tephras occur at or close to the onset of the last deglaciation (Termination 1) within their respective palaeoenvironmental records, therefore making them potentially crucial tephrostratigraphic markers. This study investigates distal tephra deposits thought to be from Etna recorded in the Ionian Sea (Y-1), Lago Grande di Monticchio (LGdM, Italy; tephras TM-11 and TM-12-1), Lago di Mezzano (Italy) and the Haua Fteah cave (Libya). The glass chemistry of Y-1 tephras recorded in the Ionian Sea and at Haua Fteah are consistent with the Biancavilla Ignimbrites (16,965-17,670 cal yrs BP) and the upper Acireale Plinian fall (D2b). The LGdM record indicates that explosive activity on Etna associated with Unit D spans a minimum of 1540 ± 80 varve years. TM-12-1 (19,200-19,804 cal yrs BP) in LGdM appears to represent the oldest distal counterpart of Etna Unit D explosive activity and is associated with the lower Acireale (D1b) Plinian eruption. The proximally undefined TM-11 (17,640-18,324 cal yrs BP) and distal correlatives are geochemically distinct from the Ionian Sea Y-1 tephra. Such significant compositional differences seen between distal tephra layers are not observed within individual proximal units and are likely to indicate that the distal tephras relate to separate eruptive phases. Until proximal relationships can be established, the TM-11 type Y-1 equivalents should be termed TM-11. Great care should be exercised when using these distal ash layers to synchronise sedimentary records during a crucial period of environmental change.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: Laminated sediments of the maar lake Lago Grande di Monticchio in southern Italy exhibit a unique sequence of numerous primary tephra events that provide both insights into the Late Quaternary eruptive history of Italian volcanoes and an archive of essential marker horizons for dating and linking palaeoclimate records throughout the Central and Eastern Mediterranean. The acquisition of new sediment cores from this lake now extends the existing 100 ka-tephra record back to 133 ka BP, the end of the penultimate Glacial. The additional ca 30 m of sediments host a total number of 52 single tephra layers forming 21 tephra clusters that have been characterised on the basis of detailed geochemical and petrographical examinations. Tephras can be assigned to hitherto poorly known Plinian to sub-Plinian eruptive events of the nearby Campanian (Ischia Island, Phlegrean Fields), Roman (Sabatini volcanic district) and Aeolian-Sicilian volcanoes (Etna, Stromboli, Salina) and are dated according to the varve and sedimentation rate chronology of Monticchio sediments. The most prominent tephra layers within the interval of investigation – TM-25 and TM-27 – can be firmly correlated with Ionian Sea tephras X-5 (ca 105 ka BP) and X-6 (ca 108–110 ka BP). In addition, a further 26 tephra layers are correlated with radiometrically and radioisotopically dated volcanic events providing the basis for a robust revised tephrochronology of the entire Monticchio sediment sequence for the last 133 ka.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...