ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 550 - Earth sciences  (34)
  • back‐arc basins  (1)
  • 1
    Publication Date: 2023-07-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Due to the complexity of 2D magnetic anomaly maps north of 18°S and the sparsity of seismic data, the tectonic evolution of the northern Lau Basin has not yet been unraveled. We use a multi‐method approach to reconstruct the formation of the basin at ∼16°S by compiling seismic, magnetic, gravimetric and geochemical data along a 185 km‐long crustal transect. We identified a crustal zonation which preserves the level of subduction input at the time of the crust's formation. Paired with the seafloor magnetization, the crustal zonation enabled us to qualitatively approximate the dynamic spreading history of the region. Further assessment of the recent tectonic activity and the degree of tectonic overprinting visible in the crust both suggest a complex tectonic history including a dynamically moving spreading center and the reorganizing of the local magma supply. Comparing the compiled data sets has revealed substantial differences in the opening mechanisms of the two arms of the Overlapping Spreading Center (OSC) that is made up by the northernmost tip of the Fonualei Rift and Spreading Center in the east and the southernmost segment of the Mangatolu Triple Junction in the west. The observed transition from a predominantly tectonic opening mechanism at the eastern OSC arm to a magmatic opening mechanism at the western OSC arm coincides with an equally sharp transition from and strongly subduction influenced crust to a crust with virtually no subduction input. The degree of subduction input alters the geochemical composition, as well as the lithospheric stress response.〈/p〉
    Description: Plain Language Summary: The opening of back‐arc basins is often described as analogy to mid‐ocean ridge spreading, where the only difference is the force driving the extension. However, the northern Lau Basin is a prime example for the shortcomings of this analogy since its crust preserves an image of its complex tectonic history. The complexity results from the short‐lived nature of zones of active rifting and spreading in the northern Lau Basin, which is very different from the temporally and spatially steady nature of spreading centers at mid‐ocean ridges. The analysis of different methods (wide angle seismic data using ocean bottom seismometers, multi‐channel seismic, magnetic, gravity, and geochemical data) has led us to conclude that the Lau Basin's crust at 15°30–17°20′S was formed by a dynamically changing, both in regard of magma composition and position, extensional system that consists of the Fonualei Rift and Spreading Center and the Mangatolu Triple Junction. Nevertheless, the crustal zonation, formed by the varying subduction influence during its formation, is still preserved and affects the stress response of the crust and thus the present‐day tectonic behavior.〈/p〉
    Description: Key Points: Oceanic crust in the north‐eastern Lau Basin formed at the now reorganized FRSC‐MTJ system. The position and the opening mechanisms of back‐arc basin spreading center's change more dynamically than at mid‐ocean ridges. Different opening mechanisms at the southern Mangatolu Triple Junction and northern Fonualei Rift Spreading Center despite their proximity.
    Description: German Ministry of Science and Education
    Description: GEOMAR Helmholtz Centre for Ocean Research Kiel
    Description: Federal Institute for Geosciences and Natural Resources
    Description: https://doi.org/10.1594/PANGAEA.945716
    Description: https://doi.org/10.1594/PANGAEA.945716
    Keywords: ddc:551.1 ; Lau Basin ; back‐arc basins ; multi‐disciplinary approach ; crustal evolution ; traveltime tomography ; extension dynamics
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: The studies of the 2004 and 2005 Sumatra earthquakes showed the presence of the segmentation boundary limiting the rupture areas offshore Northern Sumatra. Recent geophysical studies provide new insight on the structure of this boundary and the changes in the subduction processes around Northern Sumatra. In this study we present new model obtained from refraction/reflection seismic modeling, MCS data, and relocated seismicity. The comparison with the crustal scale profile located in the rupture area of the December 2004 Sumatra earthquake reveals principal differences in the structure of the accretionary complex, as well as in the structure of the forearc crust. The segmentation boundary is linked to the differences in the sediment supply at the trench and the variations in the Sumatra block crustal thickness. In the southern segment frontal prism is well developed and manifested in the clear trust faulting, it is separated from the accretionary prism by a pronounced splay fault, which are not clearly observed in the northern segment. The width of the accretionary complex is much narrower in the southern segment, while having similar depth extend. The Vp velocity analysis suggests that in the southern segment the Mentawai fault is active, while north of Simeulue it is not or less active. The crustal thickness of the Sumatra basement is increasing towards south, which influences the backstop geometry and the dip angle of the downgoing plate; resulting in the steeper subduction in the south.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  International Seminar/Workshop on Tsunami 'In Memoriam 120 Years of Krakatau Eruption Tsunami and Lessons Learned from Large Tsunamis' (Jakarta/Anyer 2003)
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: Seismic and volcanic activities in Central Java, Indonesia, the area of interest of this study, are directly or indirectly related to the subduction of the Indo-Australian plate. In the framework of the MERapi AMphibious EXperiments (MERAMEX), a network consisting of about 130 seismographic stations was installed onshore and offshore in Central Java and operated for more than 150 days. In addition, 3-D active seismic experiments were carried out offshore. In this paper, we present the results of processing combined active and passive seismic data, which contain traveltimes from 292 local earthquakes and additional airgun shots along three offshore profiles. The inversion was performed using the updated LOTOS-06 code that allows processing for active and passive source data. The joint inversion of the active and passive data set considerably improves the resolution of the upper crust, especially in the offshore area in comparison to only passive data. The inversion results are verified using a series of synthetic tests. The resulting images showan exceptionally strong low-velocity anomaly (−30 per cent) in the backarc crust northward of the active volcanoes. In the upper mantle beneath the volcanoes, we observe a low-velocity anomaly inclined towards the slab, which probably reflects the paths of fluids and partially melted materials in the mantle wedge. The crust in the forearc appears to be strongly heterogeneous. The onshore part consists of two high-velocity blocks separated by a narrow low-velocity anomaly, which can be interpreted as a weakened contact zone between two rigid crustal bodies. The recent Java Mw = 6.3 earthquake (2006/05/26-UTC) occurred at the lower edge of this zone. Its focal strike slip mechanism is consistent with the orientation of this contact.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Description: We present a detailed 3-D P-wave velocity model obtained by first-arrival travel-time tomography with seismic refraction data in the segment boundary of the Sumatra subduction zone across Simeulue Island, and an image of the top of the subducted oceanic crust extracted from depth-migrated multi-channel seismic reflection profiles. We have picked P-wave first arrivals of the air-gun source seismic data recorded by local networks of ocean-bottom seismometers, and inverted the travel-times for a 3-D velocity model of the subduction zone. This velocity model shows an anomalous zone of intermediate velocities between those of oceanic crust and mantle that is associated with raised topography on the top of the oceanic crust. We interpret this feature as a thickened crustal zone in the subducting plate with compositional and topographic variations, providing a primary control on the upper plate structure and on the segmentation of the 2004 and 2005 earthquake ruptures.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Festschrift anlässlich des 65. Geburtstages von Prof. Dr.-Ing. Carl-Erhard Gerstenecker | Schriftenreihe / Fachrichtung Geodäsie, Fachbereich Bauingenieurwesen und Geodäsie, Technische Universität Darmstadt ; 28
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Description: Subduction zone earthquakes are known to create segmented patches of co-seismic rupture along-strike of a margin. Offshore Sumatra, repeated rupture occurred within segments bounded by permanent barriers, whose origin however is still not fully understood. In this study we image the structural variations across the rupture segment boundary between the Mw 9.1 December 26, 2004 and the Mw 8.6 March 28, 2005 Sumatra earthquakes. A set of collocated reflection and wide-angle seismic profiles are available on both sides of the segment boundary, located offshore Simeulue Island. We present the results of the seismic tomography modeling of wide-angle ocean bottom data, enhanced with MCS data and gravity modeling for the southern 2005 segment of the margin and compare it to the published model for the 2004 northern segment. Our study reveals principal differences in the structure of the subduction system north and south of the segment boundary, attributed to the subduction of 96°E fracture zone. The key differences include a change in the crustal thickness of the oceanic plate, a decrease in the amount of sediment in the trench as well as variations in the morphology and volume of the accretionary prism. These differences suggest that the 96°E fracture zone acts as an efficient barrier in the trench parallel sediment transport, as well as a divider between oceanic crustal blocks of different structure. The variability of seismic behavior is caused by the distinct changes in the morphology of the subduction complex across the boundary related to the difference in the sediment supply.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...