ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Plant Science Letters 33 (1984), S. 337-344 
    ISSN: 0304-4211
    Keywords: Acetylene reduction ; Mutation ; Nitrate ; Nodulation ; Pisum sativum
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 82 (1984), S. 427-438 
    ISSN: 1573-5036
    Keywords: Mutant ; Mutation ; Nitrate ; Nitrate reductase ; Nodulation ; Pisum sativum L. ; Rhizobium leguminosarum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In pea (Pisum sativum L.), mutants could be induced, modified in the symbiotic interaction withRhizobium leguminosarum. Among 250 M2-families, two nodulation resistant mutants (K5 and K9) were obtained. In mutant K5 the nodulation resistance was monogenic recessive and not Rhizobium strain specific. Out of 220 M2-families one mutant nod3 was found which could form nodules at high nitrate concentrations (15 mM KNO3). This mutant nodulated abundantly with severalRhizobium strains, both in the absence and presence of nitrate. Probably as the result of a pleiotropic effect, its root morphology was also changed. Among 1800 M2-families, five nitrate reductase deficient mutants were obtained and one of them (mutant E1) was used to study the inhibitory effect of nitrate on nodulation and nitrogen fixation. The results of the present investigation show that pea mutants which are modified in their symbiosis withRhizobium leguminosarum, can readily be obtained. The significance of such mutants for fundamental studies of the legume-Rhizobium symbiosis and for applications in plant breeding is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-01-11
    Description: Proteins of the ARGONAUTE family are important in diverse posttranscriptional RNA-mediated gene-silencing systems as well as in transcriptional gene silencing in Drosophila and fission yeast and in programmed DNA elimination in Tetrahymena. We cloned ARGONAUTE4 (AGO4) from a screen for mutants that suppress silencing of the Arabidopsis SUPERMAN (SUP) gene. The ago4-1 mutant reactivated silent SUP alleles and decreased CpNpG and asymmetric DNA methylation as well as histone H3 lysine-9 methylation. In addition, ago4-1 blocked histone and DNA methylation and the accumulation of 25-nucleotide small interfering RNAs (siRNAs) that correspond to the retroelement AtSN1. These results suggest that AGO4 and long siRNAs direct chromatin modifications, including histone methylation and non-CpG DNA methylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zilberman, Daniel -- Cao, Xiaofeng -- Jacobsen, Steven E -- GM07185/GM/NIGMS NIH HHS/ -- GM60398/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):716-9. Epub 2003 Jan 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell, and Developmental Biology, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1606.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12522258" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Argonaute Proteins ; Cloning, Molecular ; *DNA Methylation ; DNA, Plant/metabolism ; DNA-Cytosine Methylases/genetics/metabolism ; Dinucleoside Phosphates/metabolism ; Gene Silencing ; Genes, Plant ; Genes, Suppressor ; Histone-Lysine N-Methyltransferase ; Histones/*metabolism ; Methylation ; Methyltransferases/genetics/metabolism ; Mutation ; RNA, Plant/metabolism ; RNA, Small Interfering/*metabolism ; Retroelements ; Suppression, Genetic ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-08-04
    Description: Myotonic dystrophy (DM), the most common form of muscular dystrophy in adults, can be caused by a mutation on either chromosome 19q13 (DM1) or 3q21 (DM2/PROMM). DM1 is caused by a CTG expansion in the 3' untranslated region of the dystrophia myotonica-protein kinase gene (DMPK). Several mechanisms have been invoked to explain how this mutation, which does not alter the protein-coding portion of a gene, causes the specific constellation of clinical features characteristic of DM. We now report that DM2 is caused by a CCTG expansion (mean approximately 5000 repeats) located in intron 1 of the zinc finger protein 9 (ZNF9) gene. Parallels between these mutations indicate that microsatellite expansions in RNA can be pathogenic and cause the multisystemic features of DM1 and DM2.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liquori, C L -- Ricker, K -- Moseley, M L -- Jacobsen, J F -- Kress, W -- Naylor, S L -- Day, J W -- Ranum, L P -- CA56266/CA/NCI NIH HHS/ -- HG002051/HG/NHGRI NIH HHS/ -- NS35870/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):864-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Human Genetics; MMC 206, 420 Delaware Street SE, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486088" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Blotting, Southern ; Chromosome Mapping ; Chromosomes, Human, Pair 3/genetics ; DNA-Binding Proteins/chemistry/*genetics/metabolism ; Diseases in Twins/genetics ; Female ; Humans ; In Situ Hybridization, Fluorescence ; *Introns ; Linkage Disequilibrium ; Lod Score ; Male ; *Microsatellite Repeats ; Muscles/metabolism ; Mutation ; Myotonic Dystrophy/*genetics/metabolism ; Phenotype ; Polymerase Chain Reaction ; RNA, Messenger/genetics/metabolism ; RNA-Binding Proteins/chemistry/*genetics/metabolism ; Twins, Monozygotic ; *Zinc Fingers/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-08-22
    Description: Mutations in the SUPERMAN gene affect flower development in Arabidopsis. Seven heritable but unstable sup epi-alleles (the clark kent alleles) are associated with nearly identical patterns of excess cytosine methylation within the SUP gene and a decreased level of SUP RNA. Revertants of these alleles are largely demethylated at the SUP locus and have restored levels of SUP RNA. A transgenic Arabidopsis line carrying an antisense methyltransferase gene, which shows an overall decrease in genomic cytosine methylation, also contains a hypermethylated sup allele. Thus, disruption of methylation systems may yield more complex outcomes than expected and can result in methylation defects at known genes. The clark kent alleles differ from the antisense line because they do not show a general decrease in genomic methylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacobsen, S E -- Meyerowitz, E M -- New York, N.Y. -- Science. 1997 Aug 22;277(5329):1100-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9262479" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Arabidopsis/*genetics/growth & development/metabolism ; *Arabidopsis Proteins ; Base Sequence ; Crosses, Genetic ; Cytosine/metabolism ; DNA (Cytosine-5-)-Methyltransferase/genetics ; *DNA Methylation ; DNA, Antisense ; DNA, Plant/metabolism ; Gene Expression Regulation, Plant ; *Genes, Plant ; Genetic Complementation Test ; Molecular Sequence Data ; Mutation ; Phenotype ; Plants, Genetically Modified ; RNA, Messenger/metabolism ; RNA, Plant/metabolism ; Transcription Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-07-24
    Description: The venom of predatory marine snails is a rich source of natural products that act on specific receptors and ion channels within the mammalian nervous system. A 41-amino acid peptide, final sigma-conotoxin GVIIIA, was purified on the basis of its ability to inactivate the 5-HT3 receptor, an excitatory serotonin-gated ion channel. final sigma-Conotoxin contains a brominated tryptophan residue, which may be important for peptide activity because the endogenous ligand for the 5-HT3 receptor is a hydroxylated derivative of tryptophan. final sigma-Conotoxin inactivates the 5-HT3 receptor through competitive antagonism and is a highly selective inhibitor of this receptor. Serotonin receptors can now be included among the molecular targets of natural polypeptide neurotoxins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England, L J -- Imperial, J -- Jacobsen, R -- Craig, A G -- Gulyas, J -- Akhtar, M -- Rivier, J -- Julius, D -- Olivera, B M -- GM44298/GM/NIGMS NIH HHS/ -- GM48677/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 24;281(5376):575-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143-0450, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9677203" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/analysis ; Animals ; Benzamides/pharmacology ; Bicyclo Compounds, Heterocyclic/pharmacology ; Binding Sites ; Cell Line ; Cloning, Molecular ; *Conotoxins ; DNA, Complementary ; Ion Channel Gating ; Ion Channels/*antagonists & inhibitors ; Molecular Sequence Data ; Mollusk Venoms/chemistry/genetics/isolation & purification/*pharmacology ; Peptides, Cyclic/pharmacology ; Receptors, Serotonin/*metabolism ; Receptors, Serotonin, 5-HT3 ; Receptors, Serotonin, 5-HT4 ; Recombinant Fusion Proteins/antagonists & inhibitors/metabolism ; Recombinant Proteins/antagonists & inhibitors ; Serotonin/metabolism/pharmacology ; Serotonin Antagonists/chemistry/isolation & purification/*pharmacology ; Snails/*chemistry ; Tryptophan/analysis/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-07-16
    Description: Multiple pathways prevent DNA replication from occurring more than once per cell cycle. These pathways block re-replication by strictly controlling the activity of pre-replication complexes, which assemble at specific sites in the genome called origins. Here we show that mutations in the homologous histone 3 lysine 27 (H3K27) monomethyltransferases, ARABIDOPSIS TRITHORAX-RELATED PROTEIN5 (ATXR5) and ATXR6, lead to re-replication of specific genomic locations. Most of these locations correspond to transposons and other repetitive and silent elements of the Arabidopsis genome. These sites also correspond to high levels of H3K27 monomethylation, and mutation of the catalytic SET domain is sufficient to cause the re-replication defect. Mutation of ATXR5 and ATXR6 also causes upregulation of transposon expression and has pleiotropic effects on plant development. These results uncover a novel pathway that prevents over-replication of heterochromatin in Arabidopsis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964344/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964344/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacob, Yannick -- Stroud, Hume -- Leblanc, Chantal -- Feng, Suhua -- Zhuo, Luting -- Caro, Elena -- Hassel, Christiane -- Gutierrez, Crisanto -- Michaels, Scott D -- Jacobsen, Steven E -- GM075060/GM/NIGMS NIH HHS/ -- R01 GM075060/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Aug 19;466(7309):987-91. doi: 10.1038/nature09290. Epub 2010 Jul 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, 915 East Third Street, Bloomington, Indiana 47405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20631708" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; *Arabidopsis/cytology/enzymology/genetics ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Catalytic Domain/genetics ; DNA Methylation ; DNA Replication/genetics/*physiology ; DNA Transposable Elements/genetics ; DNA, Plant/analysis/biosynthesis ; Gene Expression Regulation, Plant ; Gene Silencing ; Genome, Plant/genetics ; Heterochromatin/*genetics/metabolism ; Histone-Lysine N-Methyltransferase/*metabolism ; Histones/chemistry/*metabolism ; Lysine/metabolism ; Methylation ; Methyltransferases/chemistry/genetics/*metabolism ; Mutant Proteins/genetics/metabolism ; Mutation ; Replication Origin
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-02-19
    Description: Cytosine DNA methylation is important in regulating gene expression and in silencing transposons and other repetitive sequences. Recent genomic studies in Arabidopsis thaliana have revealed that many endogenous genes are methylated either within their promoters or within their transcribed regions, and that gene methylation is highly correlated with transcription levels. However, plants have different types of methylation controlled by different genetic pathways, and detailed information on the methylation status of each cytosine in any given genome is lacking. To this end, we generated a map at single-base-pair resolution of methylated cytosines for Arabidopsis, by combining bisulphite treatment of genomic DNA with ultra-high-throughput sequencing using the Illumina 1G Genome Analyser and Solexa sequencing technology. This approach, termed BS-Seq, unlike previous microarray-based methods, allows one to sensitively measure cytosine methylation on a genome-wide scale within specific sequence contexts. Here we describe methylation on previously inaccessible components of the genome and analyse the DNA methylation sequence composition and distribution. We also describe the effect of various DNA methylation mutants on genome-wide methylation patterns, and demonstrate that our newly developed library construction and computational methods can be applied to large genomes such as that of mouse.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2377394/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2377394/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cokus, Shawn J -- Feng, Suhua -- Zhang, Xiaoyu -- Chen, Zugen -- Merriman, Barry -- Haudenschild, Christian D -- Pradhan, Sriharsa -- Nelson, Stanley F -- Pellegrini, Matteo -- Jacobsen, Steven E -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Mar 13;452(7184):215-9. doi: 10.1038/nature06745. Epub 2008 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18278030" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Animals ; Arabidopsis/*genetics ; Base Sequence ; Computational Biology ; Cytosine/metabolism ; *DNA Methylation ; Gene Expression Regulation, Plant/genetics ; Gene Library ; Genome, Plant/*genetics ; Mice ; Mutation/genetics ; Promoter Regions, Genetic/genetics ; Reproducibility of Results ; Sequence Analysis, DNA/*methods ; Sulfites/*metabolism ; Uracil/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-09-06
    Description: Maintenance methylation of hemimethylated CpG dinucleotides at DNA replication forks is the key to faithful mitotic inheritance of genomic methylation patterns. UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is required for maintenance methylation by interacting with DNA nucleotide methyltransferase 1 (DNMT1), the maintenance methyltransferase, and with hemimethylated CpG, the substrate for DNMT1 (refs 1 and 2). Here we present the crystal structure of the SET and RING-associated (SRA) domain of mouse UHRF1 in complex with DNA containing a hemimethylated CpG site. The DNA is contacted in both the major and minor grooves by two loops that penetrate into the middle of the DNA helix. The 5-methylcytosine has flipped completely out of the DNA helix and is positioned in a binding pocket with planar stacking contacts, Watson-Crick polar hydrogen bonds and van der Waals interactions specific for 5-methylcytosine. Hence, UHRF1 contains a previously unknown DNA-binding module and is the first example of a non-enzymatic, sequence-specific DNA-binding protein domain to use the base flipping mechanism to interact with DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2602803/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2602803/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hashimoto, Hideharu -- Horton, John R -- Zhang, Xing -- Bostick, Magnolia -- Jacobsen, Steven E -- Cheng, Xiaodong -- CA1263022/CA/NCI NIH HHS/ -- GM049245/GM/NIGMS NIH HHS/ -- GM060398/GM/NIGMS NIH HHS/ -- R01 GM049245/GM/NIGMS NIH HHS/ -- R01 GM049245-15/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Oct 9;455(7214):826-9. doi: 10.1038/nature07280. Epub 2008 Sep 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772888" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/*metabolism ; Animals ; Base Sequence ; CpG Islands/genetics ; Crystallography, X-Ray ; DNA/*chemistry/genetics/*metabolism ; *DNA Methylation ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Molecular Conformation ; Nuclear Proteins/*chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-09-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Enver, Tariq -- Jacobsen, Sten Eirik W -- G0501838/Medical Research Council/United Kingdom -- G0801073/Medical Research Council/United Kingdom -- MC_U137973817/Medical Research Council/United Kingdom -- England -- Nature. 2009 Sep 10;461(7261):183-4. doi: 10.1038/461183a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19741696" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Lineage/*drug effects ; Granulocyte Colony-Stimulating Factor/*pharmacology ; Hematopoiesis/*drug effects ; Hematopoietic Stem Cells/*cytology/*drug effects/metabolism ; Humans ; Macrophage Colony-Stimulating Factor/*pharmacology ; MafB Transcription Factor/metabolism ; Mice ; *Models, Biological ; Multipotent Stem Cells/cytology/drug effects/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...