ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0867
    Keywords: 15N ; non-nod beans ; quantification of N2 fixation ; reference crops ; simulation technique ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A technique for the application of the15N isotope dilution technique for the quantification of plant associated biological nitrogen fixation (BNF) was tested and applied to quantify the BNF contribution to two genotypes ofPhaseolus vulgaris. The technique makes use of sequential measurements of the15N enrichment of soil mineral N, and the uptake of labelled N by the “N2-fixing” plant, to simulate its uptake of soil N (the “soil to plant simulation” technique). The test was made with two non-N2-fixing crops (non-nodulating beans and wheat) and two bean genotypes (PR 923450 and Puebla 152), at two levels of N fertilizer addition (10 and 40 kg N ha−1), to compare the actual N uptake with that simulated from the soil and crop15N data. The simulation of the soil N uptake by the non-nod bean crop using this “soil to plant simulation” technique underestimated by 20 to 30% the true N uptake, suggesting that the mineral N extracted from soil samples taken from the 0–15cm layer had a higher15N enrichment than that N sampled by the roots of this crop. In the case of the wheat crop the simulation resulted in a much greater underestimation of actual N uptake. In general the results using this technique suggested that BNF inputs to the bean cultivars was higher than would be expected from the nodulation and acetylene reduction data, except for the early PR beans in the 40 kg N ha−1 treatment. In this case the total N and simulated soil N accumulation were well matched suggesting no BNF inputs. An allied technique (the “plant to plant simulation technique”) was proposed where the15N enrichrnent of soil mineral N was simulated from the data for total N and labelled N accumulation taken from sequential harvests of either of the non-N2 -fixing control crops. This was then utilized in combination with the labelled N uptake data of the other crop to simulate its soil N uptake. However, the results using either technique indicated that the wheat and non-nod or nodulating beans exploited pools of N in the soil with completely different15N enrichments probably due to differences in exploitation of the soil N with depth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: A-value ; isotope dilution ; nitrogen fixation ; quantification ; 15N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In the estimation of the contribution of biological nitrogen fixation (BNF) to plant nutrition many authors have compared the estimates derived from the15N-isotope-dilution technique with those derived from the total N-difference technique. In this paper we show that agreement of these two estimates is mathematically inevitable when the recovery of labelled nitrogen (%FUE) by the “N2-fixing” (test) and control plants is equal, and that this agreement does not constitute an independent confirmation of the BNF estimate derived from one technique by the other. Even if different quantities of15N labelled fertilizer are added to the test and control crops (the A-value technique), but the % FUE for the two crops is the same, then again the BNF estimate derived from the A-value calculations will inevitably agree with the total N difference estimate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: Azospirillum amazonense ; A. brasilense ; N NR− mutant ; Wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Two experiments were performed to examine the effects of inoculation of field grown wheat with various Azospirillum strains. In the first experiment the soil was sterilized with methyl bromide to reduce the Azospirillum population and15N labelled fertilizer was added to all treatments. Two strains ofAzospirillum brasilense isolated from surface sterilized wheat roots and theA. brasilense type strain Sp7 all produced similar increases in grain yield and N content. From the15N and acetylene reduction data it was apparent that these increases were not due to N2 fixation. In the second experiment performed in the same (unsterilized) soil, twoA. brasilense strains (Sp245, Sp246) and oneA. amazonense strain (Am YTr), all isolated from wheat roots, produced responses of dry matter and N content while the response to the strain Sp7 was much smaller. These data confirm earlier results which indicate that if natural Azospirillum populations in the soil are high (the normal situation under Brazilian conditions), strains which are isolated from wheat roots are better able to produce inoculation responses than strains isolated from other sources. The inoculation of a nitrate reductase negative mutant of the strain Sp245 produced only a very small inoculation response in wheat. This suggests that the much greater inoculation response of the original strain was not due to N2 fixation but to an increased nitrate assimilation due to the nitrate reductase activity of the bacteria in the roots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...