ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • nitrate  (2)
  • 15N, nitrogen balance  (1)
  • 1
    ISSN: 1573-5036
    Keywords: cowpea ; denitrification ; dinitrogen ; 15N, nitrogen balance ; nitrous oxide ; Oryza sativa L. ; Vigna unguiculata (L.) Walp.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A field study was conducted on a clay soil (Andaqueptic Haplaquoll) in the Philippines to directly measure the evolution of (N2+N2O)−15N from 98 atom %15N-labeled urea broadcast at 29 kg N ha−1 into 0.05-m-deep floodwater at 15 days after transplanting (DT) rice. The flux of (N2+N2O)−15N during the 19 days following urea application never exceeded 28 g N ha−1 day−1. The total recovery of (N2+N2O)−15N evolved from the field was only 0.51% of the applied N, whereas total gaseous15N loss estimated from unrecovered15N in the15N balance was 41% of the applied N. Floodwater (nitrate+nitrite)−N in the 5 days following urea application never exceeded 0.14 g N m−3 or 0.3% of the applied N. Prior cropping of cowpea [Vigna unguiculata (L.) Walp.] to flowering with subsequent incorporation of the green manure (dry matter=2.5 Mg ha−1, C/N=15) at 15 days before rice transplanting had no effect on fate of urea applied to rice at 15 DT. The recovery of (N2+N2O)−15N and total15N loss during the 19 days following urea application were 0.46 and 40%, respectively. Direct recovery of evolved (N2+N2O)−15N and total15N loss from 27 kg applied nitrate-N ha−1 were 20% and 53% during the same 19-day period. The failure of directly-recovered (N2+N2O)−15N to match total15N loss from added nitrate-15N might be due to entrapment of denitrification end products in soil or transport of gaseous end products to the atmosphere through rice plants. The rapid conversion of added nitrate-N to (N2+N2O)−N, the apparently sufficient water soluble soil organic C for denitrification (101 μg C g−1 in the top 0.15-m soil layer), and the low floodwater nitrate following urea application suggested that denitrification loss from urea was controlled by supply of nitrate rather than by availability of organic C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: added nitrogen interaction ; green manure ; 15N ; N loss ; neem ; nitrate ; nitrogen ; Oryza sativa L. ; Vigna unguiculata (L.) Walp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Little is known about whether the high N losses from inorganic N fertilizers applied to lowland rice (Oryza sativa L.) are affected by the combined use of either legume green manure or residue with N fertilizers. Field experiments were conducted in 1986 and 1987 on an Andaqueptic Haplaquoll in the Philippines to determine the effect of cowpea [Vigna unguiculata (L.) Walp.] cropping systems before rice on the fate and use efficiency of15N-labeled, urea and neem cake (Azadirachta indica Juss.) coated urea (NCU) applied to the subsequent transplanted lowland rice crop. The pre-rice cropping systems were fallow, cowpea incorporated at the flowering stage as a green manure, and cowpea grown to maturity with subsequent incorporation of residue remaining after grain and pod removal. The incorporated green manure contained 70 and 67 kg N ha−1 in 1986 and 1987, respectively. The incorporated residue contained 54 and 49 kg N ha−1 in 1986 and 1987, respectively. The unrecovered15N in the15N balances for 58 kg N ha−1 applied as urea or NCU ranged from 23 to 34% but was not affected by pre-rice cropping system. The partial pressure of ammoniapNH3, and floodwater (nitrate + nitrite)-N following application of 29 kg N ha−1 as urea or NCU to 0.05-m-deep floodwater at 14 days after transplanting was not affected by pre-rice cropping system. In plots not fertilized with urea or NCU, green manure contributed an extra 12 and 26 kg N ha−1, to mature rice plants in 1986 and 1987, respectively. The corresponding contributions from residue were 19 and 23 kg N ha−1, respectively. Coating urea with 0.2g neem cake per g urea had no effect on loss of urea-N in either year; however, it significantly increased grain yield (0.4 Mg ha−1) and total plant N (11 kg ha−1) in 1987 but not in 1986.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 142 (1992), S. 53-61 
    ISSN: 1573-5036
    Keywords: neem ; N fertilizer ; nitrate ; Oryza sativa L. ; Vigna unguiculata (L.) Walp.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Cowpea, Vigna unguiculata (L.) Walp., is well adapted to acid upland soil and can be grown for seed, green manure, and fodder production. A 2-yr field experiment was conducted on an Aeric Tropaqualf in the Philippines to determine the effect of cowpea management practice on the response of a subsequent upland rice crop to applied urea. Cowpea was grown to flowering and incorporated as a green manure or grown to maturity with either grain and pods removed or all aboveground vegetation removed before sowing rice. Cowpea green manure accumulated on average 68 kg N ha−1, and aboveground residue after harvest of dry pods contained on average 46 kg N ha−1. Compared with a pre-rice fallow, cowpea green manure and residue increased grain yield of upland rice by 0.7 Mg ha−1 when no urea was applied to rice. Green manure and residue substituted for 66 and 70 kg urea-N ha−1 on upland rice, respectively. In the absence of urea, green manure and residue increased total aboveground N in mature rice by 12 and 14 kg N ha−1, respectively. These increases corresponded to plant recoveries of 13% for applied green manure N and 24% for applied residue N. At 15 d after sowing rice (DAS), 33% of the added green manure N and 16% of the added residue N was recovered as soil (nitrate + ammonium)-N. At 30 DAS, the corresponding recoveries were 20 and 37% for green manure N and residue N, respectively. Cowpea cropping with removal of all aboveground cowpea vegetation slightly increased (p〈0.05) soil (nitrate + ammonium)-N at 15 DAS as compared with the pre-rice fallow, but it did not increase rice yield. Cowpea residue remaining after harvest of dry pods can be an effective N source for a subsequent upland rice crop.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...