ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 131-808A; 131-808B; 131-808C; DRILL; Drilling/drill rig; Joides Resolution; Leg131; Ocean Drilling Program; ODP; Philippine Sea  (2)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Masuda, Harue; Tanaka, Hiroaki; Gamo, Toshitaka; Soh, Wonn; Taira, Asahiko (1993): Major-element chemistry and alteration mineralogy of volcanic ash, Site 808 in the Nankai Trough. In: Hill, IA; Taira, A; Firth, JV; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 131, 175-183, https://doi.org/10.2973/odp.proc.sr.131.118.1993
    Publication Date: 2024-01-09
    Description: Mineralogical and major-element compositions of 72 samples of volcanic ash, recovered from Site 808 at Nankai Trough during Leg 131, were analyzed in relation to the early diagenetic alteration. Alteration products are first observed at the following depths: smectite, 200 mbsf; clinoptilolite, 646 mbsf; and analcite, 810 mbsf. Glass decomposition dominates over authigenic mineral formation between 200 and 550 mbsf in the sediment column, whereas mineral formation becomes dominant below 550 mbsf. Based on the X-ray diffraction patterns, a broad and asymmetric peak of 15A suggests a presence of illite/smectite (I/S) mixed-layered minerals in a sample from 646 mbsf. I/S mixed-layered mineral formation, however, rarely occurs even at the bottom of the sediment column (1290 mbsf) at 120° C. This is possibly because zeolite (especially clinoptilolite) formed in the ash interferes with illite formation in the smectite. The formation of alteration minerals affects the major-element chemistry of the ash and the interstitial waters. H4SiO4 concentrations in interstitial waters increase during glass decomposition and decrease with smectite and clinoptilolite formation. K is removed from interstitial water into smectite and/or clinoptilolite. Mg is fixed into smectite (and/or chlorite).
    Keywords: 131-808A; 131-808B; 131-808C; DRILL; Drilling/drill rig; Joides Resolution; Leg131; Ocean Drilling Program; ODP; Philippine Sea
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Underwood, Michael B; Orr, Robert; Pickering, Kevin T; Taira, Asahiko (1993): Provenance and dispersal patterns of sediments in the turbidite wedge of Nankai Trough. In: Hill, IA; Taira, A; Firth, JV; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 131, 15-34, https://doi.org/10.2973/odp.proc.sr.131.105.1993
    Publication Date: 2024-06-25
    Description: Drill core recovered at Ocean Drilling Program Site 808 (Leg 131) proves that the wedge of trench sediment within the central region of the Nankai Trough comprises approximately 600 m of hemipelagic mud, sandy turbidites, and silty turbidites. The stratigraphic succession thickens and coarsens upward, with hemipelagic muds and volcanic-ash layers of the Shikoku Basin overlain by silty and sandy trench-wedge deposits. Past investigations of clay mineralogy and sand petrography within this region have led to the hypothesis that most of the detritus in the Nankai Trough was derived from the Izu-Honshu collision zone and transported southwestward via axial turbidity currents. Shipboard analyses of paleocurrent indicators, on the other hand, show that most of the ripple cross-laminae within silty turbidites of the outer marginal trench-wedge facies are inclined to the north and northwest; thus, many of the turbidity currents reflected off the seaward slope of the trench rather than moving straight down the trench axis. Shore-based analyses of detrital clay minerals demonstrate that the hemipelagic muds and matrix materials within sandy and silty turbidites are all enriched in illite; chlorite is the second-most abundant clay mineral, followed by smectite. In general, the relative mineral percentages change relatively little as a function of depth, and the hemipelagic clay-mineral population is virtually identical to the turbidite-matrix population. Comparisons between different size fractions (〈2 µm and 2-6 µm) show modest amounts of mineral partitioning, with chlorite content increasing in the coarser fraction and smectite increasing in the finer fraction. Values of illite crystallinity index are consistent with conditions of advanced anchimetamorphism and epimetamorphism within the source region. Of the three mica polytypes detected, the 2M1 variety dominates over the 1M and 1Md polytypes; these data are consistent with values of illite crystallinity. Measurements of mica bo lattice spacing show that the detrital illite particles were eroded from a zone of intermediate-pressure metamorphism. Collectively, these data provide an excellent match with the lithologic and metamorphic character of the Izu-Honshu collision zone. Data from Leg 131, therefore, confirm the earlier interpretations of detrital provenance. The regional pattern of sediment dispersal is dominated by a combination of southwest-directed axial turbidity currents, radial expansion of the axial flows, oblique movement of suspended clouds onto and beyond the seaward slope of the Nankai Trough, and flow reflection back toward the trench axis.
    Keywords: 131-808A; 131-808B; 131-808C; DRILL; Drilling/drill rig; Joides Resolution; Leg131; Ocean Drilling Program; ODP; Philippine Sea
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...