ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI  (4)
  • 10-methyl-fatty acid C14:0, per unit mass total organic carbon; 10-methyl-fatty acid C16:0, per unit mass total organic carbon; 10-methyl-fatty acid C17:0, per unit mass total organic carbon; 10-methyl-fatty acid C18:0, per unit mass total organic carbon; 12-methyl-fatty acid C16:0, per unit mass total organic carbon; 12-methyl-fatty acid C18:0, per unit mass total organic carbon; 3-hydroxyl-fatty acid C6:0, per unit mass total organic carbon; 3-hydroxyl-fatty acid C7:0, per unit mass total organic carbon; 3-hydroxyl-fatty acid C8:0, per unit mass total organic carbon; anteiso-fatty acid C11:0, per unit mass total organic carbon; anteiso-fatty acid C12:0, per unit mass total organic carbon; anteiso-fatty acid C13:0, per unit mass total organic carbon; anteiso-fatty acid C15:0, per unit mass total organic carbon; anteiso-fatty acid C17:0, per unit mass total organic carbon; anteiso-fatty acid C17:1, per unit mass total organic carbon; AWI Arctic Land Expedition; Biomarker; CACOON; Carbon; Changing Arctic Carbon cycle in the cOastal Ocean Near-shore; cyclo-fatty acid C17, per unit mass total organic carbon; cyclo-fatty acid C19, per unit mass total organic carbon; erosion; Event label; fatty acid C16:1w5, per unit mass total organic carbon; fatty acid C16:1w7cis, per unit mass total organic carbon; fatty acid C16:1w7trans, per unit mass total organic carbon; fatty acid C18:1w7cis, per unit mass total organic carbon; fatty acid C18:1w7trans, per unit mass total organic carbon; fatty acid C18:1w9, per unit mass total organic carbon; fatty acid C18:2w6,9, per unit mass total organic carbon; Height above river level; iso-fatty acid C10:0, per unit mass total organic carbon; iso-fatty acid C11:0, per unit mass total organic carbon; iso-fatty acid C13:0, per unit mass total organic carbon; iso-fatty acid C14:0, per unit mass total organic carbon; iso-fatty acid C15:0, per unit mass total organic carbon; iso-fatty acid C16:0, per unit mass total organic carbon; iso-fatty acid C17:0, per unit mass total organic carbon; iso-fatty acid C17:1, per unit mass total organic carbon; iso-fatty acid C18:0, per unit mass total organic carbon; iso-fatty acid C19:0, per unit mass total organic carbon; methyl-fatty acid C16:0, per unit mass total organic carbon; methyl-fatty acid C17:0, per unit mass total organic carbon; n-alkane; n-fatty acid C10:0, per unit mass total organic carbon; n-fatty acid C11:0, per unit mass total organic carbon; n-fatty acid C12:0, per unit mass total organic carbon; n-fatty acid C13:0, per unit mass total organic carbon; n-fatty acid C14:0, per unit mass total organic carbon; n-fatty acid C15:0, per unit mass total organic carbon; n-fatty acid C16:0, per unit mass total organic carbon; n-fatty acid C17:0, per unit mass total organic carbon; n-fatty acid C17:1, per unit mass total organic carbon; n-fatty acid C18:0, per unit mass total organic carbon; n-fatty acid C18:3, per unit mass total organic carbon; n-fatty acid C19:0, per unit mass total organic carbon; n-fatty acid C19:1, per unit mass total organic carbon; n-fatty acid C20:0, per unit mass total organic carbon; n-fatty acid C20:1, per unit mass total organic carbon; n-fatty acid C21:0, per unit mass total organic carbon; n-fatty acid C22:0, per unit mass total organic carbon; n-fatty acid C23:0, per unit mass total organic carbon; n-fatty acid C24:0, per unit mass total organic carbon; n-fatty acid C24:1, per unit mass total organic carbon; n-fatty acid C25:0, per unit mass total organic carbon; n-fatty acid C26:0, per unit mass total organic carbon; n-fatty acid C27:0, per unit mass total organic carbon; n-fatty acid C28:0, per unit mass total organic carbon; n-fatty acid C29:0, per unit mass total organic carbon; n-fatty acid C30:0, per unit mass total organic carbon; n-fatty acid C32:0, per unit mass total organic carbon; n-fatty acid C8:0, per unit mass total organic carbon; n-fatty acid C9:0, per unit mass total organic carbon; n-fatty acids; PERM; Phytanoic acid, per unit mass total organic carbon; RU-Land_2018_Lena_Sobo-Sise; Sample ID; Sampling permafrost; Siberia; SOB18-01; SOB18-03; SOB18-06; Sobo-Sise 2018; Sobo-Sise Island; Standard deviation; Stigmastenone, per unit mass total organic carbon; Yedoma  (1)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schirrmeister, Lutz; Grigoriev, Mikhail N; Strauss, Jens; Grosse, Guido; Overduin, Pier Paul; Kohlodov, Aleksander; Guenther, Frank; Hubberten, Hans-Wolfgang (2018): Sediment characteristics of a thermokarst lagoon in the northeastern Siberian Arctic (Ivashkina Lagoon, Bykovsky Peninsula). arktos - The Journal of Arctic Geosciences, 4(1), https://doi.org/10.1007/s41063-018-0049-8
    Publication Date: 2023-03-07
    Description: We here present lithological, geochronological, and geochemical data from a core drilled in 1999 in the Ivashkina Lagoon on the Bykovsky Peninsula, Northeast Siberia.
    Keywords: AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI
    Type: Dataset
    Format: application/zip, 8 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Overduin, Pier Paul; Liebner, Susanne; Knoblauch, Christian; Günther, Frank; Wetterich, Sebastian; Schirrmeister, Lutz; Hubberten, Hans-Wolfgang; Grigoriev, Mikhail N (2015): Methane oxidation following submarine permafrost degradation: Measurements from a central Laptev Sea shelf borehole. Journal of Geophysical Research: Biogeosciences, 120(5), 965-978, https://doi.org/10.1002/2014JG002862
    Publication Date: 2023-03-07
    Description: Submarine permafrost degradation has been invoked as a cause for recent observations of methane emissions from the seabed to the water column and atmosphere of the East Siberian shelf. Sediment drilled 52 m down from the sea ice in Buor Khaya Bay, central Laptev Sea revealed unfrozen sediment overlying ice-bonded permafrost. Methane concentrations in the overlying unfrozen sediment were low (mean 20 µM) but higher in the underlying ice-bonded submarine permafrost (mean 380 µM). In contrast, sulfate concentrations were substantially higher in the unfrozen sediment (mean 2.5 mM) than in the underlying submarine permafrost (mean 0.1 mM). Using deduced permafrost degradation rates, we calculate potential mean methane efflux from degrading permafrost of 120 mg/m**2 per year at this site. However, a drop of methane concentrations from 190 µM to 19 µM and a concomitant increase of methane d13C from -63 per mil to -35 per mil directly above the ice-bonded permafrost suggest that methane is effectively oxidized within the overlying unfrozen sediment before it reaches the water column. High rates of methane ebullition into the water column observed elsewhere are thus unlikely to have ice-bonded permafrost as their source.
    Keywords: AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mitzscherling, Julia; Horn, Fabian; Winterfeld, Maria; Mahler, Linda; Kallmeyer, Jens; Overduin, Pier Paul; Schirrmeister, Lutz; Winkel, Matthias; Grigoriev, Mikhail N; Wagner, Dirk; Liebner, Susanne (2019): Microbial community composition and abundance after millennia of submarine permafrost warming. Biogeosciences, 16(19), 3941-3958, https://doi.org/10.5194/bg-16-3941-2019
    Publication Date: 2023-03-07
    Description: The mobilization of carbon in degrading permafrost is a long-term process and an important feedback upon climate change. Under submarine conditions substantial permafrost warming occurs millennia before permafrost thaws, potentially stimulating microbial communities. How microbial community composition and abundance responded to millennial-scale permafrost warming remains, however, unkown. We measured the in situ development of bacterial community composition and abundance together with temperature, salinity and pore water chemistry along an onshore-offshore transect on the Siberian Arctic Shelf. Samples derived from ice-bonded terrestrial permafrost comparable in age and sedimentation history that had been warming by more than 10 °C over the last 2500 years. Bacterial assemblages identified through amplicon sequencing correlated only weakly with temperature but strongly with pore water stable isotope signatures. They showed a significant spatial variation. Bacterial 16S rRNA gene copies quantified through qPCR negatively correlated with rising temperature, while both gene copies and total cell counts negatively correlated with increasing pore water salinity. Correlations of microbial community composition and abundance to stable isotope signatures and pore water salinity imply that they still mainly reflect the sedimentation history. On time-scales of centuries, permafrost warming coincided with decreasing microbial abundances, whereas millennia after inundation, microbial cell abundance was similar to onshore permafrost. We suggest that, as long as permafrost remains frozen the effect of warming alone on the permafrost-carbon-feedback is marginally even on time-scales of millennia because it has an overall low-level effect on microbial community composition and abundance.
    Keywords: AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mitzscherling, Julia; Winkel, Matthias; Winterfeld, Maria; Horn, Fabian; Yang, Sizhong; Grigoriev, Mikhail N; Wagner, Dirk; Overduin, Pier Paul; Liebner, Susanne (2017): The development of permafrost bacterial communities under submarine conditions. Journal of Geophysical Research: Biogeosciences, 122(7), 1689-1704, https://doi.org/10.1002/2017JG003859
    Publication Date: 2024-02-06
    Description: Submarine permafrost is more vulnerable to thawing than permafrost on land. Besides increased heat transfer from the ocean water, the penetration of salt lowers the freezing temperature and accelerates permafrost degradation. This data set provides sediment temperatures and pore water chemistry from two submarine permafrost cores from the Laptev Sea on the East Siberian Arctic Shelf which inundated about 540 and 2500 years ago. These data are published in partnership with a paper by Magritz et al., that traces how bacterial communities develop depending on duration of the marine influence and pore water chemistry. Magritz et al. (2017) show that submarine permafrost is a source of microbial life deep below the seafloor where it forms an unusual, non-steady state habitat. Pore water chemistry revealed different pore water units that reflected stages of permafrost thaw. Millennia after inundation by sea water, bacteria stratify into communities in permafrost, marine-affected permafrost, and seabed sediments. In contrast to pore water chemistry, the development of bacterial community structure, diversity and abundance in submarine permafrost appear site-specific, suggesting that both sedimentation and permafrost thaw histories strongly affect bacteria. Finally, highest total cell counts, DNA concentrations and bacterial gene copy numbers were observed in the ice-bonded unaffected permafrost unit of the longer inundated core, suggesting that permafrost bacterial communities exposed to submarine conditions proliferate millennia after warming.
    Keywords: AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-07
    Description: Organic carbon (OC) stored in Arctic permafrost represents one of Earth’s largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits are still poorly quantified. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecular geochemical and carbon isotopic analyses of late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last ~52 ka. We show that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt%).We found that the OM quality, which we define as the intrinsic potential to further transformation, decomposition, and mineralization, is also high as inferred by the lipid biomarker inventory. The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal kyr BP) and is overlaid by Last Glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7–0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of iso and anteiso-branched FAs relative to long chain (C ≥ 20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits, suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C / N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease of HPFA values downwards along the profile probably indicates a relatively stronger OM decomposition in the oldest (MIS 3) deposits of the cliff.
    Keywords: 10-methyl-fatty acid C14:0, per unit mass total organic carbon; 10-methyl-fatty acid C16:0, per unit mass total organic carbon; 10-methyl-fatty acid C17:0, per unit mass total organic carbon; 10-methyl-fatty acid C18:0, per unit mass total organic carbon; 12-methyl-fatty acid C16:0, per unit mass total organic carbon; 12-methyl-fatty acid C18:0, per unit mass total organic carbon; 3-hydroxyl-fatty acid C6:0, per unit mass total organic carbon; 3-hydroxyl-fatty acid C7:0, per unit mass total organic carbon; 3-hydroxyl-fatty acid C8:0, per unit mass total organic carbon; anteiso-fatty acid C11:0, per unit mass total organic carbon; anteiso-fatty acid C12:0, per unit mass total organic carbon; anteiso-fatty acid C13:0, per unit mass total organic carbon; anteiso-fatty acid C15:0, per unit mass total organic carbon; anteiso-fatty acid C17:0, per unit mass total organic carbon; anteiso-fatty acid C17:1, per unit mass total organic carbon; AWI Arctic Land Expedition; Biomarker; CACOON; Carbon; Changing Arctic Carbon cycle in the cOastal Ocean Near-shore; cyclo-fatty acid C17, per unit mass total organic carbon; cyclo-fatty acid C19, per unit mass total organic carbon; erosion; Event label; fatty acid C16:1w5, per unit mass total organic carbon; fatty acid C16:1w7cis, per unit mass total organic carbon; fatty acid C16:1w7trans, per unit mass total organic carbon; fatty acid C18:1w7cis, per unit mass total organic carbon; fatty acid C18:1w7trans, per unit mass total organic carbon; fatty acid C18:1w9, per unit mass total organic carbon; fatty acid C18:2w6,9, per unit mass total organic carbon; Height above river level; iso-fatty acid C10:0, per unit mass total organic carbon; iso-fatty acid C11:0, per unit mass total organic carbon; iso-fatty acid C13:0, per unit mass total organic carbon; iso-fatty acid C14:0, per unit mass total organic carbon; iso-fatty acid C15:0, per unit mass total organic carbon; iso-fatty acid C16:0, per unit mass total organic carbon; iso-fatty acid C17:0, per unit mass total organic carbon; iso-fatty acid C17:1, per unit mass total organic carbon; iso-fatty acid C18:0, per unit mass total organic carbon; iso-fatty acid C19:0, per unit mass total organic carbon; methyl-fatty acid C16:0, per unit mass total organic carbon; methyl-fatty acid C17:0, per unit mass total organic carbon; n-alkane; n-fatty acid C10:0, per unit mass total organic carbon; n-fatty acid C11:0, per unit mass total organic carbon; n-fatty acid C12:0, per unit mass total organic carbon; n-fatty acid C13:0, per unit mass total organic carbon; n-fatty acid C14:0, per unit mass total organic carbon; n-fatty acid C15:0, per unit mass total organic carbon; n-fatty acid C16:0, per unit mass total organic carbon; n-fatty acid C17:0, per unit mass total organic carbon; n-fatty acid C17:1, per unit mass total organic carbon; n-fatty acid C18:0, per unit mass total organic carbon; n-fatty acid C18:3, per unit mass total organic carbon; n-fatty acid C19:0, per unit mass total organic carbon; n-fatty acid C19:1, per unit mass total organic carbon; n-fatty acid C20:0, per unit mass total organic carbon; n-fatty acid C20:1, per unit mass total organic carbon; n-fatty acid C21:0, per unit mass total organic carbon; n-fatty acid C22:0, per unit mass total organic carbon; n-fatty acid C23:0, per unit mass total organic carbon; n-fatty acid C24:0, per unit mass total organic carbon; n-fatty acid C24:1, per unit mass total organic carbon; n-fatty acid C25:0, per unit mass total organic carbon; n-fatty acid C26:0, per unit mass total organic carbon; n-fatty acid C27:0, per unit mass total organic carbon; n-fatty acid C28:0, per unit mass total organic carbon; n-fatty acid C29:0, per unit mass total organic carbon; n-fatty acid C30:0, per unit mass total organic carbon; n-fatty acid C32:0, per unit mass total organic carbon; n-fatty acid C8:0, per unit mass total organic carbon; n-fatty acid C9:0, per unit mass total organic carbon; n-fatty acids; PERM; Phytanoic acid, per unit mass total organic carbon; RU-Land_2018_Lena_Sobo-Sise; Sample ID; Sampling permafrost; Siberia; SOB18-01; SOB18-03; SOB18-06; Sobo-Sise 2018; Sobo-Sise Island; Standard deviation; Stigmastenone, per unit mass total organic carbon; Yedoma
    Type: Dataset
    Format: text/tab-separated-values, 923 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...