ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Climate - Biogeochemistry Interactions in the Tropical Ocean; SFB754; SOPRAN; Surface Ocean Processes in the Anthropocene  (3)
  • 551.46  (2)
  • 1 sec resolution; CT; DAM_Underway; DAM Underway Research Data; M181; M181-track; Meteor (1986); TRATLEQ 2; Underway cruise track measurements  (1)
  • Biochemistry and Biotechnology
Collection
Keywords
Publisher
Language
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Electrophoresis 3 (1982), S. 174-175 
    ISSN: 0173-0835
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: We describe a rapid method whereby isolated chloroplasts from Euglena gracilis can be separated in a Ficoll gradient according to their surface pK's by isoelectric focusing in one hour or less. The linear Ficoll gradient is made isotonic over the whole separation distance by addition of sucrose. No released proteins of the isolated chloroplasts are detectable after isoelectric focusing. Modifications of the chloroplast envelope during the cell cycle of Euglena gracilis are evident by alterations of their isoelectric points.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schlundt, Michael; Brandt, Peter; Dengler, Marcus; Hummels, Rebecca; Fischer, Tim; Bumke, Karl; Krahmann, Gerd; Karstensen, Johannes (2014): Mixed layer heat and salinity budgets during the onset of the 2011 Atlantic cold tongue. Journal of Geophysical Research: Oceans, 119(11), 7882-7910, https://doi.org/10.1002/2014JC010021
    Publication Date: 2024-02-01
    Description: The mixed layer (ML) temperature and salinity changes in the central tropical Atlantic have been studied by a dedicated experiment (Cold Tongue Experiment (CTE)) carried out from May to July 2011. The CTE was based on two successive research cruises, a glider swarm, and moored observations. The acquired in situ data sets together with satellite, reanalysis, and assimilation model data were used to evaluate box-averaged ML heat and salinity budgets for two subregions: (1) the western equatorial Atlantic cold tongue (ACT) (23°-10°W) and (2) the region north of the ACT. The strong ML heat loss in the ACT region during the CTE was found to be the result of the balance of warming due to net surface heat flux and cooling due to zonal advection and diapycnal mixing. The northern region was characterized by weak cooling and the dominant balance of net surface heat flux and zonal advection. A strong salinity increase occurred at the equator, 10°W, just before the CTE. During the CTE, ML salinity in the ACT region slightly increased. Largest contributions to the ML salinity budget were zonal advection and the net surface freshwater flux. While essential for the ML heat budget in the ACT region, diapycnal mixing played only a minor role for the ML salinity budget. In the region north of the ACT, the ML freshened at the beginning of the CTE due to precipitation, followed by a weak salinity increase. Zonal advection changed sign contributing to ML freshening at the beginning of the CTE and salinity increase afterward.
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; SFB754; SOPRAN; Surface Ocean Processes in the Anthropocene
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Brandt, Peter; Bange, Hermann Werner; Banyte, Donata; Dengler, Marcus; Didwischus, Sven-Helge; Fischer, Tim; Greatbatch, Richard J; Hahn, Johannes; Kanzow, Torsten; Karstensen, Johannes; Körtzinger, Arne; Krahmann, Gerd; Schmidtko, Sunke; Stramma, Lothar; Tanhua, Toste; Visbeck, Martin (2015): On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic. Biogeosciences, 12(2), 489-512, https://doi.org/10.5194/bg-12-489-2015
    Publication Date: 2024-02-01
    Description: Ocean observations carried out in the framework of the Collaborative Research Center 754 (SFB 754) "Climate-Biogeochemistry Interactions in the Tropical Ocean" are used to study (1) the structure of tropical oxygen minimum zones (OMZs), (2) the processes that contribute to the oxygen budget, and (3) long-term changes in the oxygen distribution. The OMZ of the eastern tropical North Atlantic (ETNA), located between the well-ventilated subtropical gyre and the equatorial oxygen maximum, is composed of a deep OMZ at about 400 m depth with its core region centred at about 20° W, 10° N and a shallow OMZ at about 100 m depth with lowest oxygen concentrations in proximity to the coastal upwelling region off Mauritania and Senegal. The oxygen budget of the deep OMZ is given by oxygen consumption mainly balanced by the oxygen supply due to meridional eddy fluxes (about 60%) and vertical mixing (about 20%, locally up to 30%). Advection by zonal jets is crucial for the establishment of the equatorial oxygen maximum. In the latitude range of the deep OMZ, it dominates the oxygen supply in the upper 300 to 400 m and generates the intermediate oxygen maximum between deep and shallow OMZs. Water mass ages from transient tracers indicate substantially older water masses in the core of the deep OMZ (about 120-180 years) compared to regions north and south of it. The deoxygenation of the ETNA OMZ during recent decades suggests a substantial imbalance in the oxygen budget: about 10% of the oxygen consumption during that period was not balanced by ventilation. Long-term oxygen observations show variability on interannual, decadal and multidecadal time scales that can partly be attributed to circulation changes. In comparison to the ETNA OMZ the eastern tropical South Pacific OMZ shows a similar structure including an equatorial oxygen maximum driven by zonal advection, but overall much lower oxygen concentrations approaching zero in extended regions. As the shape of the OMZs is set by ocean circulation, the widespread misrepresentation of the intermediate circulation in ocean circulation models substantially contributes to their oxygen bias, which might have significant impacts on predictions of future oxygen levels.
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; SFB754; SOPRAN; Surface Ocean Processes in the Anthropocene
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fischer, Tim; Kock, Annette; Arévalo-Martínez, Damian L; Dengler, Marcus; Brandt, Peter; Bange, Hermann Werner (2019): Gas exchange estimates in the Peruvian upwelling regime biased by multi-day near-surface stratification. Biogeosciences, 16(11), 2307-2328, https://doi.org/10.5194/bg-16-2307-2019
    Publication Date: 2024-02-01
    Description: The coastal upwelling regime off Peru in December 2012 showed considerable vertical concentration gradients of dissolved nitrous oxide (N2O) across the top few meters of the ocean. The gradients were predominantly downward, i.e., concentrations decreased toward the surface. Ignoring these gradients causes a systematic error in regionally integrated gas exchange estimates, when using observed concentrations at several meters below the surface as input for bulk flux parameterizations – as is routinely practiced. Here we propose that multi-day near-surface stratification events are responsible for the observed near-surface N2O gradients, and that the gradients induce the strongest bias in gas exchange estimates at winds of about 3 to 6 m s−1. Glider hydrographic time series reveal that events of multi-day near-surface stratification are a common feature in the study region. In the same way as shorter events of near-surface stratification (e.g., the diurnal warm layer cycle), they preferentially exist under calm to moderate wind conditions, suppress turbulent mixing, and thus lead to isolation of the top layer from the waters below (surface trapping). Our observational data in combination with a simple gas-transfer model of the surface trapping mechanism show that multi-day near-surface stratification can produce near-surface N2O gradients comparable to observations. They further indicate that N2O gradients created by diurnal or shorter stratification cycles are weaker and do not substantially impact bulk emission estimates. Quantitatively, we estimate that the integrated bias for the entire Peruvian upwelling region in December 2012 represents an overestimation of the total N2O emission by about a third, if concentrations at 5 or 10 m depth are used as surrogate for bulk water N2O concentration. Locally, gradients exist which would lead to emission rates overestimated by a factor of two or more. As the Peruvian upwelling region is an N2O source of global importance, and other strong N2O source regions could tend to develop multi-day near-surface stratification as well, the bias resulting from multi-day near-surface stratification may also impact global oceanic N2O emission estimates.
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; SFB754; SOPRAN; Surface Ocean Processes in the Anthropocene
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  GEOMAR - Helmholtz Centre for Ocean Research Kiel
    Publication Date: 2024-04-20
    Description: Raw data acquired by position sensors on board RV METEOR during expedition M181 were processed to receive a validated master track which can be used as reference of further expedition data. During M181 the motion reference unit Kongsberg SeaTex AS MRU-5 combined with Kongsberg SeaTex AS Seapath 320 and two C and C Technologies GPS receivers C-NAV3050 were used as navigation sensors. Data were downloaded from DAVIS SHIP data base (https://dship.bsh.de) with a resolution of 1 sec. Processing and evaluation of the data is outlined in the data processing report. Processed data are provided as a master track with 1 sec resolution derived from the position sensors' data selected by priority and a generalized track with a reduced set of the most significant positions of the master track.
    Keywords: 1 sec resolution; CT; DAM_Underway; DAM Underway Research Data; M181; M181-track; Meteor (1986); TRATLEQ 2; Underway cruise track measurements
    Type: Dataset
    Format: application/zip, 18.2 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-07-21
    Description: The intraseasonal variability of the tropical eastern boundary upwelling region in the Atlantic Ocean is investigated using multiyear mooring and satellite data. Pronounced oscillations of alongshore velocity and sea level off Angola at periods of about 90 and 120 days are observed. Similar spectral peaks are detected along the equator suggesting an equatorial forcing via equatorial and coastally trapped waves. Equatorial variability at 90 days is enhanced only in the eastern Atlantic likely forced by local zonal wind fluctuations. Variability at 120 days is generally stronger and linked to a second equatorial basin mode covering the whole equatorial basin. Besides forcing of the 120‐day variability by equatorial zonal winds, additional forcing of the resonant basin mode likely originates in the central and western tropical North Atlantic. The coastally trapped waves generated at the eastern boundary by the impinging equatorial Kelvin waves that are detected through their variations in sea level anomaly are associated with corresponding sea surface temperature anomalies delayed by about 14 days. Off Angola, those intraseasonal waves interfere with major coastal warm and cold events that occur every few years by either enhancing them as for the Benguela Niño in 1995 or damping them as for the warm event in 2001.
    Description: Plain Language Summary: The tropical Angolan upwelling system hosts a highly productive ecosystem which plays a key socioeconomic role for societal development and fisheries in Angola. The eastern boundary circulation off Angola is dominated by the warm poleward‐flowing Angola Current. During austral summer, the Angola Current transports warm tropical waters into the Benguela upwelling system. Such a transport is often linked to extreme coastal warm events the so‐called Benguela Niños. The opposite of Benguela Niños are Benguela Niñas, both affecting the marine ecosystem and climate on multiyear time scale. At intraseasonal time scale, the Angola Current variability is dominated at periods of 90 and 120 days emanating from equatorial forcing. The 120‐day variability in the equatorial basin resembles a resonance of east‐ and westward‐propagating waves. This resonant basin mode transmits part of its energy poleward as coastally trapped waves forcing the variability along the Angolan coast and at the northern boundary of the Gulf of Guinea. The impact of these intraseasonal waves on the development of the extreme coastal warm or cold events can be shown by the relation between sea level and sea surface temperature anomalies in Southern Angola: maximum sea level is leading maximum sea surface temperature by about 14 days.
    Description: Key Points: Intraseasonal variability of the Angola Current is linked to equatorial ocean dynamics and interfere with Benguela Niños and Niñas. Coastally trapped waves off Angola at 120‐day period are associated with equatorial basin‐mode resonance. Intraseasonal coastally trapped waves impact sea surface temperature off Angola and in the Gulf of Guinea via thermocline feedback.
    Description: EU H2020 TRIATLAS project
    Description: Bundesministerium für Bildung und Forschung (SACUS II)
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: 551.46 ; Angola Current ; Benguela Niños ; equatorial and coastally trapped waves ; equatorial basin mode ; intraseasonal variability ; thermocline feedback
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-07
    Description: Abstract Although the core velocity of the Atlantic North Equatorial Undercurrent (NEUC) is low (0.1−0.3 m s−1), it has been suggested to act as an important oxygen supply route towards the oxygen minimum zone in the eastern tropical North Atlantic. For the first time, the intraseasonal to interannual NEUC variability and its impact on oxygen are investigated based on shipboard and moored velocity observations around 5°N, 23°W. In contrast to previous studies that were mainly based on models or hydrographic data, we find hardly any seasonal cycle of NEUC transports in the central Atlantic. The NEUC transport variability is instead dominated by sporadic intraseasonal events. Only some of these events are associated with high oxygen levels suggesting an occasional eastward oxygen supply by NEUC transport events. Nevertheless, they likely contribute to the local oxygen maximum in the mean shipboard section along 23°W at the NEUC core position.
    Keywords: 551.46 ; Atlantic North Equatorial Undercurrent (NEUC)
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...