ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Key wordsEnterobacter agglomerans ; 1 ; 3-Propanediol dehydrogenase ; Protein purification ; Kinetic study ; pH ; Competitive inhibition ; Mixed-type ; inhibition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Because of its key role in the metabolism of glycerol during fermentation, 1,3-propanediol dehydrogenase (EC 1.1.1.202) of Enterobacter agglomerans CNCM 1210 was purified to homogeneity and studied with respect to its sensitivity to pH and to nucleotide and 1,3-propanediol concentrations. Enzyme activity was optimal at pH 7.8. The enzyme was competitively inhibited by NAD+ (Ki of 0.29 mM), and 1,3-propanediol exerted a strong inhibitory effect according to a mixed-type inhibition with a Ki of 13.7 mM and an a-factor of 9.0. It is proposed that these dehydrogenase properties be extended to the dehydrogenases of Citrobacter freundii and Klebsiella pneumoniae, which exhibited numerous similar physical properties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Extremophiles 2 (1998), S. 141-148 
    ISSN: 1433-4909
    Keywords: Key words Hyperthermophile ; Methanothermus fervidus ; Histone evolution ; Genome structure ; Nucleosome positioning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Archaeal histones from mesophilic, thermophilic, and hyperthermophilic members of the Euryarchaeota have primary sequences, the histone fold, tertiary structures, and dimer formation in common with the eukaryal nucleosome core histones H2A, H2B, H3, and H4. Archaeal histones form nucleoprotein complexes in vitro and in vivo, designated archaeal nucleosomes, that contain histone tetramers and protect approximately 60 base pairs of DNA from nuclease digestion. Based on the sequence and structural homologies and experimental data reviewed here, archaeal nucleosomes appear similar, and may be homologous in evolutionary terms and function, to the structure at the center of the eukaryal nucleosome formed by the histone (H3+H4)2 tetramer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...