ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Meteorology and Climatology  (5)
  • 1,1,1,2-Tetrafluoroethane; 1,1,2-Trichloro-1,2,2-trifluoroethane; 1,1-Dichloro-1-fluoroethane; 1,1-Difluoroethane; 1,2-Dibromotetrafluoroethane; 1,2-Dichloroethane; 1,2-Dichlorotetrafluoroethane; 1-Chlor-1,2,2,2-tetrafluorethan; 1-Chloro-1,1-difluoroethane; 23-10; ALTITUDE; Benzene; Bromochlorodifluoromethane; Bromoform; Bromomethane; Carbonyl sulfide; Chlorodibromomethane; Chlorodifluoromethane; Chloroform; Chloromethane; CT; DATE/TIME; Dibromomethane; Dichlorodifluoromethane; Dichloromethane; Dimethyl sulfate; Eastern Tropical North Atlantic; Ethyl nitrate; Event label; Isobutane; Isopentane; Isoprene; Isopropyl nitrate; LATITUDE; LONGITUDE; Methyl acetate; Methyl Chloroform; Methyl iodide; Methyl nitrate; n-Butane; n-Hexane; n-Pentane; n-Propyl nitrate; POS399/2; POS399/2-track; POS399/3; POS399/3-track; Poseidon; Propane; sec-Butyl nitrate; SOPRAN; Surface Ocean Processes in the Anthropocene; Tetrachlormethan; Tetrachloroethylene; Toluene; Trichlorfluormethan; Underway cruise track measurements  (1)
  • 19-Butanoyloxyfucoxanthin; 19-Hexanoyloxyfucoxanthin; Alloxanthin; alpha-Carotene, beta,epsilon-Carotene; Antheraxanthin; Astaxanthin; beta-Carotene, beta,beta-Carotene; Chlorophyll a; Chlorophyll b; Chlorophyll c1+c2; Chlorophyll c3; CT; CTD/Rosette; CTD-002; CTD-003; CTD-010; CTD-013; CTD-017; CTD-019; CTD-021; CTD-024; CTD-026; CTD-028; CTD-030; CTD-034; CTD-035; CTD-036; CTD-039; CTD-041; CTD-043; CTD-044; CTD-045; CTD-046; CTD-047; CTD-048; CTD-049; CTD-050; CTD-052; CTD-055; CTD-058; CTD-060; CTD-061; CTD-064; CTD-065; CTD-067; CTD-068; CTD-071; CTD-073; CTD-075; CTD-080; CTD-082; CTD-083; CTD-088; CTD-090; CTD-094; CTD-095; CTD-096; CTD-097; CTD-RO; DATE/TIME; DEPTH, water; Diadinoxanthin; Diatoxanthin; Dinoxanthin; Divinyl chlorophyll a; Divinyl chlorophyll b; Event label; Fucoxanthin; Gear; High Performance Liquid Chromatography (HPLC); LATITUDE; LONGITUDE; Lutein; M91; M91_1713-1; M91_1713-3; M91_1719-1; M91_1721-3; M91_1724-3; M91_1725-3; M91_1727-1; M91_1729-1; M91_1731-1; M91_1733-1; M91_1733-13; M91_1736-3; M91_1737-1; M91_1737-3; M91_1739-3; M91_1741-1; M91_1743-1; M91_1744-1; M91_1745-1; M91_1746-1; M91_1747-1; M91_1748-1; M91_1749-1; M91_1750-1; M91_1751-3; M91_1752-8; M91_1754-1; M91_1755-4; M91_1756-1; M91_1759-1; M91_1760-1; M91_1762-2; M91_1763-1; M91_1764-8; M91_1765-1; M91_1766-3; M91_1769-1; M91_1770-4; M91_1771-1; M91_1774-3; M91_1775-3; M91_1777-12; M91_1777-4; M91_1777-7; M91_1778-1; M91-track; Meteor (1986); Mg-2,4-divinyl pheoporphyrin a5 monomethyl ester; Neoxanthin; Peridinin; Phaeophorbide a; Pheophytin a; Pheophytin b; Pyropheophorbide a; Pyropheophytin a; Sample code/label; South Pacific Ocean; Underway cruise track measurements; Violaxanthin; Zeaxanthin  (1)
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2018-06-06
    Beschreibung: Microwave Limb Sounder and Sounding of the Atmosphere with Broadband Emission Radiometry data show the polar stratopause, usually higher than and separated from that at midlatitudes, dropping from 〈55-60 to near 30 km, and cooling dramatically in January 2006 during a major stratospheric sudden warming (SSW). After a nearly isothermal period, a cool stratopause reforms near 75 km in early February, then drops to 〈55 km and warms. The stratopause is separated in longitude as well as latitude, with lowest temperatures in the transition regions between higher and lower stratopauses. Operational assimilated meteorological analyses, which are not constrained by data at stratopause altitude, do not capture a secondary temperature maximum that overlies the stratopause or the very high stratopause that reforms after the SSW; they underestimate the stratopause altitude variation during the SSW. High-quality daily satellite temperature measurements are invaluable in improving our understanding of stratopause evolution and its representation in models and assimilation systems.
    Schlagwort(e): Meteorology and Climatology
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2018-06-06
    Beschreibung: The 2003-2004 Arctic winter was remarkable in the 40-year record of meteorological analyses. A major warming beginning in early January 2004 led to nearly two months of vortex disruption with high-latitude easterlies in the middle to lower stratosphere. The upper stratospheric vortex broke up in late December, but began to recover by early January, and in February and March was the strongest since regular observations began in 1979. The lower stratospheric vortex broke up in late January. Comparison with two previous years, 1984-1985 and 1986-1987, with prolonged mid-winter warming periods shows unique characteristics of the 2003-2004 warming period: The length of the vortex disruption, the strong and rapid recovery in the upper stratosphere, and the slow progression of the warming from upper to lower stratosphere. January 2004 zonal mean winds in the middle and lower stratosphere were over two standard deviations below average. Examination of past variability shows that the recent frequency of major stratospheric warmings (seven in the past six years) is unprecedented. Lower stratospheric temperatures were unusually high during six of the past seven years, with five having much lower than usual potential for PSC formation and ozone loss (nearly none in 1998-1999, 2001-2002 and 2003-2004, and very little in 1997-1998 and 2000-2001). Middle and upper stratospheric temperatures, however, were unusually low during and after February. The pattern of five of the last seven years with very low PSC potential would be expected to occur randomly once every approximately 850 years. This cluster of warm winters, immediately following a period of unusually cold winters, may have important implications for possible changes in interannual variability and for determination and attribution of trends in stratospheric temperatures and ozone.
    Schlagwort(e): Meteorology and Climatology
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-13
    Beschreibung: Microwave Limb Sounder and Sounding of the Atmosphere with Broadband Emission Radiometry data provide the first opportunity to characterize the four-dimensional stratopause evolution throughout the life-cycle of a major stratospheric sudden warming (SSW). The polar stratopause, usually higher than that at midlatitudes, dropped by 30 km and warmed during development of a major "wave 1" SSW in January 2006, with accompanying mesospheric cooling. When the polar vortex broke down, the stratopause cooled and became ill-defined, with a nearly isothermal stratosphere. After the polar vortex started to recover in the upper stratosphere/lower mesosphere (USLM), a cool stratopause reformed above 75 km, then dropped and warmed; both the mesosphere above and the stratosphere below cooled at this time. The polar stratopause remained separated from that at midlatitudes across the core of the polar night jet. In the early stages of the SSW, the strongly tilted (westward with increasing altitude) polar vortex extended into the mesosphere, and enclosed a secondary temperature maximum extending westward and slightly equatorward from the highest altitude part of the polar stratopause over the cool stratopause near the vortex edge. The temperature evolution in the USLM resulted in strongly enhanced radiative cooling in the mesosphere during the recovery from the SSW, but significantly reduced radiative cooling in the upper stratosphere. Assimilated meteorological analyses from the European Centre for Medium-Range weather Forecasts (ECMWF) and Goddard Earth Observing System Version 5.0.1 (GEOS-5), which are not constrained by data at polar stratopause altitudes and have model tops near 80 km, could not capture the secondary temperature maximum or the high stratopause after the SSW; they also misrepresent polar temperature structure during and after the stratopause breakdown, leading to large biases in their radiative heating rates. ECMWF analyses represent the stratospheric temperature structure more accurately, suggesting a better representation of vertical motion; GEOS-5 analyses more faithfully describe stratopause level wind and wave amplitudes. The high-quality satellite temperature data used here provide the first daily, global, multiannual data sets suitable for assessing and, eventually, improving representation of the USLM in models and assimilation systems.
    Schlagwort(e): Meteorology and Climatology
    Materialart: Journal of Geophysical Research (ISSN 0148-0227); 113
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-18
    Beschreibung: Disturbances in the middle atmosphere are often interpreted in the framework of waves superimposed on a zonal-mean flow. This paper presents an analysis of travelling waves in the northern hemisphere stratosphere, concentrating on planetary wavenumber two (W2). Space-time spectral analysis reveals the existence of a substantial eastward-travelling planetary W2 at high latitudes in winter. While a similar feature is well documented in the southern hemisphere stratosphere, where it is observed in most winters, this northern hemisphere counterpart is less common and has not been examined in detail. A climatology of occurrence of the wave is given for the northern stratospheric winter. It is denoted as the quasi-16-day eastward travelling W2, because of its dominant periodicity, which ranges from about one to three weeks. Although the wave has some similarities with the southern hemispheric wave, there is much larger interannual and intraseasonal variability in the northern hemisphere. will emphasize the variations in the spatial and temporal structure of this wave, as isolated in meteorological analyses of radiosonde and satellite data. The possible role of these travelling waves in preconditioning the stratosphere as a precursor to sudden stratospheric warmings in both hemispheres will be discussed.
    Schlagwort(e): Meteorology and Climatology
    Materialart: IUGG 2003 Assembly; Jun 30, 2003 - Jul 11, 2003; Sapporro; Japan
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-08-14
    Beschreibung: A major stratospheric sudden warming (SSW) in January 2009 was the strongest and most prolonged on record. Aura Microwave Limb Sounder (MLS) observations are used to provide an overview of dynamics and transport during the 2009 SSW, and to compare with the intense, long-lasting SSW in January 2006. The Arctic polar vortex split during the 2009 SSW, whereas the 2006 SSW was a vortex displacement event. Winds reversed to easterly more rapidly and reverted to westerly more slowly in 2009 than in 2006. More mixing of trace gases out of the vortex during the decay of the vortex fragments, and less before the fulfillment of major SSW criteria, was seen in 2009 than in 2006; persistent well-defined fragments of vortex and anticyclone air were more prevalent in 2009. The 2009 SSW had a more profound impact on the lower stratosphere than any previously observed SSW, with no significant recovery of the vortex in that region. The stratopause breakdown and subsequent reformation at very high altitude, accompanied by enhanced descent into a rapidly strengthening upper stratospheric vortex, were similar in 2009 and 2006. Many differences between 2006 and 2009 appear to be related to the different character of the SSWs in the two years.
    Schlagwort(e): Meteorology and Climatology
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2024-04-02
    Schlagwort(e): 19-Butanoyloxyfucoxanthin; 19-Hexanoyloxyfucoxanthin; Alloxanthin; alpha-Carotene, beta,epsilon-Carotene; Antheraxanthin; Astaxanthin; beta-Carotene, beta,beta-Carotene; Chlorophyll a; Chlorophyll b; Chlorophyll c1+c2; Chlorophyll c3; CT; CTD/Rosette; CTD-002; CTD-003; CTD-010; CTD-013; CTD-017; CTD-019; CTD-021; CTD-024; CTD-026; CTD-028; CTD-030; CTD-034; CTD-035; CTD-036; CTD-039; CTD-041; CTD-043; CTD-044; CTD-045; CTD-046; CTD-047; CTD-048; CTD-049; CTD-050; CTD-052; CTD-055; CTD-058; CTD-060; CTD-061; CTD-064; CTD-065; CTD-067; CTD-068; CTD-071; CTD-073; CTD-075; CTD-080; CTD-082; CTD-083; CTD-088; CTD-090; CTD-094; CTD-095; CTD-096; CTD-097; CTD-RO; DATE/TIME; DEPTH, water; Diadinoxanthin; Diatoxanthin; Dinoxanthin; Divinyl chlorophyll a; Divinyl chlorophyll b; Event label; Fucoxanthin; Gear; High Performance Liquid Chromatography (HPLC); LATITUDE; LONGITUDE; Lutein; M91; M91_1713-1; M91_1713-3; M91_1719-1; M91_1721-3; M91_1724-3; M91_1725-3; M91_1727-1; M91_1729-1; M91_1731-1; M91_1733-1; M91_1733-13; M91_1736-3; M91_1737-1; M91_1737-3; M91_1739-3; M91_1741-1; M91_1743-1; M91_1744-1; M91_1745-1; M91_1746-1; M91_1747-1; M91_1748-1; M91_1749-1; M91_1750-1; M91_1751-3; M91_1752-8; M91_1754-1; M91_1755-4; M91_1756-1; M91_1759-1; M91_1760-1; M91_1762-2; M91_1763-1; M91_1764-8; M91_1765-1; M91_1766-3; M91_1769-1; M91_1770-4; M91_1771-1; M91_1774-3; M91_1775-3; M91_1777-12; M91_1777-4; M91_1777-7; M91_1778-1; M91-track; Meteor (1986); Mg-2,4-divinyl pheoporphyrin a5 monomethyl ester; Neoxanthin; Peridinin; Phaeophorbide a; Pheophytin a; Pheophytin b; Pyropheophorbide a; Pyropheophytin a; Sample code/label; South Pacific Ocean; Underway cruise track measurements; Violaxanthin; Zeaxanthin
    Materialart: Dataset
    Format: text/tab-separated-values, 7378 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Fuhlbruegge, Steffen; Krüger, Kirstin; Quack, Birgit; Atlas, Elliot L; Hepach, Helmke; Ziska, Franziska (2013): Impact of the marine atmospheric boundary layer conditions on VSLS abundances in the eastern tropical and subtropical North Atlantic Ocean. Atmospheric Chemistry and Physics, 13(13), 6345-6357, https://doi.org/10.5194/acp-13-6345-2013
    Publikationsdatum: 2024-06-13
    Beschreibung: During the DRIVE (Diurnal and Regional Variability of Halogen Emissions) ship campaign we investigated the variability of the halogenated very short-lived substances (VSLS) bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I) in the marine atmospheric boundary layer in the eastern tropical and subtropical North Atlantic Ocean during May/June 2010. The highest VSLS mixing ratios were found near the Mauritanian coast and close to Lisbon (Portugal). With backward trajectories we identified predominantly air masses from the open North Atlantic with some coastal influence in the Mauritanian upwelling area, due to the prevailing NW winds. The maximum VSLS mixing ratios above the Mauritanian upwelling were 8.92 ppt for bromoform, 3.14 ppt for dibromomethane and 3.29 ppt for methyl iodide, with an observed maximum range of the daily mean up to 50% for bromoform, 26% for dibromomethane and 56% for methyl iodide. The influence of various meteorological parameters - such as wind, surface air pressure, surface air and surface water temperature, humidity and marine atmospheric boundary layer (MABL) height - on VSLS concentrations and fluxes was investigated. The strongest relationship was found between the MABL height and bromoform, dibromomethane and methyl iodide abundances. Lowest MABL heights above the Mauritanian upwelling area coincide with highest VSLS mixing ratios and vice versa above the open ocean. Significant high anti-correlations confirm this relationship for the whole cruise. We conclude that especially above oceanic upwelling systems, in addition to sea-air fluxes, MABL height variations can influence atmospheric VSLS mixing ratios, occasionally leading to elevated atmospheric abundances. This may add to the postulated missing VSLS sources in the Mauritanian upwelling region (Quack et al., 2007).
    Schlagwort(e): 1,1,1,2-Tetrafluoroethane; 1,1,2-Trichloro-1,2,2-trifluoroethane; 1,1-Dichloro-1-fluoroethane; 1,1-Difluoroethane; 1,2-Dibromotetrafluoroethane; 1,2-Dichloroethane; 1,2-Dichlorotetrafluoroethane; 1-Chlor-1,2,2,2-tetrafluorethan; 1-Chloro-1,1-difluoroethane; 23-10; ALTITUDE; Benzene; Bromochlorodifluoromethane; Bromoform; Bromomethane; Carbonyl sulfide; Chlorodibromomethane; Chlorodifluoromethane; Chloroform; Chloromethane; CT; DATE/TIME; Dibromomethane; Dichlorodifluoromethane; Dichloromethane; Dimethyl sulfate; Eastern Tropical North Atlantic; Ethyl nitrate; Event label; Isobutane; Isopentane; Isoprene; Isopropyl nitrate; LATITUDE; LONGITUDE; Methyl acetate; Methyl Chloroform; Methyl iodide; Methyl nitrate; n-Butane; n-Hexane; n-Pentane; n-Propyl nitrate; POS399/2; POS399/2-track; POS399/3; POS399/3-track; Poseidon; Propane; sec-Butyl nitrate; SOPRAN; Surface Ocean Processes in the Anthropocene; Tetrachlormethan; Tetrachloroethylene; Toluene; Trichlorfluormethan; Underway cruise track measurements
    Materialart: Dataset
    Format: text/tab-separated-values, 7351 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...