ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-22
    Description: Radon monitoring represents an important investigation tool for environmental changes assessment and geochemical hazard surveillance. Despite anomalous radon emissions are commonly observed prior to earthquakes or volcanic eruptions, radon monitoring alone is not yet successful in correctly predicting these catastrophic events because contrasting radon signals are unexpectedly measured by lithologically distinct areas. This contribution aims to summarize and integrate natural and laboratory studies pertaining to the transport behavior of radon in different rock types experiencing variable stress and thermal regimes at subvolcanic conditions. The final purpose is to ignite novel and pioneer experimental researches exploring the causes and consequences of radon anomalous emissions, in order to elucidate in full the relationship between the physicochemical changes in substrate rocks and the radon signal.
    Description: Published
    Description: 309-328
    Description: 4V. Processi pre-eruttivi
    Keywords: deformation experiments ; radon monitoring ; radon signal and rock physicochemical changes ; radon transport and geochemical anomalies ; thermal experiments ; volcanic surveillance ; 04.08. Volcanology ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-24
    Description: This article has been accepted for publication in Geophysical Journal Internationa ©: The Authors 2017. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: Thermal gradients due to magma dynamics in active volcanic areas may affect the emanating power of the substrate and the background level of radon signal. This is particularly effective in subvolcanic substrates where intense hydrothermal alteration and/or weathering processes generally form hydrous minerals, such as zeolites able to store and release great amounts of H2O(up to ∼ 25 wt.%) at relative low temperatures. To better understand the role played by thermally induced devolatilization reactions on the radon signal, a new experimental setup has been developed for measuring in real time the radon emission from a zeolitized volcanic tuff. Progressive dehydration phenomena with increasing temperature produce radon emissions two orders of magnitude higher than those measured during rock deformation, microfracturing and failure. In this framework, mineral devolatilization reactions can contribute significantly to produce radon emissions spatially heterogeneous and non-stationary in time, resulting in a transient state dictated by temperature gradients and the carrier effects of subsurface gases. Results from these experiments can be extrapolated to the temporal and spatial scales of magmatic processes, where the ascent of small magma batches from depth causes volatile release due to dehydration phenomena that increase the radon signal from the degassing host rock material
    Description: Published
    Description: 558-571
    Description: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Description: 6A. Geochimica per l'ambiente
    Description: JCR Journal
    Keywords: Magma chamber processes ; Volcanic gases ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-11
    Description: Caldera-forming eruptions, during which large volumes of magma are explosively evacuated into the atmosphere from shallow crustal reservoirs, are one of the most hazardous natural events on Earth. The Campanian Ignimbrite (CI; Campi Flegrei, Italy) represents a classical example of such events, producing a voluminous pyroclastic sequence of trachytic to phonolitic magma that covered several thousands of squared kilometers in the south-central Italy around 39 ka ago. The CI deposits are known for their remarkable geochemical gradients, attributed to eruption from a vertically zoned magma chamber. We investigate the relationships between such chemical zoning and the crystallinity variations observed within the CI pyroclastic sequence by combining bulk-rock data with detailed analyses of crystals and matrix glass from well-characterized stratigraphic units. Using geothermometers and hygrometers specifically calibrated for alkaline magmas, we reconstruct the reservoir storage conditions, revealing the presence of gradients in temperature and magma water content. In particular, we observe a decrease in crystallinity and temperature and an increase in magma evolution and water content from the bottom to the top of the magma chamber. We interpret these features as the result of protracted fractional crystallization leading to the formation of a cumulate crystal mush at the base of the eruptible reservoir, from which highly evolved, crystal-poor, water-rich and relatively cold melts were separated. The extracted melts, forming a buoyant, easily eruptible cap at the top of the magma chamber, fed the initial phases of the eruption, until caldera collapse and eruption of the deeper more crystalline part of the system. This late-erupted, crystal-rich material represents remobilized portions of the cumulate crystal mush, partly melted following hotter recharge. Our interpretation is supported by: 1) the positive bulk-rock Eu anomalies and the high Ba and Sr contents observed in the crystal-rich units, implying feldspar accumulation; 2) the positive Eu anomalies in the matrix glass of the crystal-rich units, testifying to the presence of liquid derived from partial melting of low temperature mineral phases within the crystal mush (mostly feldspars); 3) the Ba and Sr-rich rims in the feldspars and positive Eu anomalies in clinopyroxene rims, suggesting late rim growth from a locally enriched melt following cumulate mush remelting and 4) the occurrence of An-rich plagioclase, relict from a more mafic recharge, which acted as a heat source. Our model reconciles many observations made over the years on zoned deposits of such high-magnitude explosive eruptions, and provides a framework to understand magma chamber processes leading up to cataclysmic events.
    Description: Published
    Description: 259–271
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-21
    Description: Sector-zoned clinopyroxene records kinetic effects imposed by variable degrees of magma undercooling, ΔT, and can be utilised to track the dynamics of magmatic systems. The partitioning of trace elements into sectors grown in different crystallographic orientations can be used as a proxy for ΔT. However, an experimental assessment of the relationship between trace element zoning and ΔT has been lacking to date. Here we present trace element data from a series of undercooling crystallisation experiments on a primitive trachybasalt from Mt. Etna (Italy), at conditions of crustal storage (400 MPa, NNO + 2), and ΔT ranging from 23 to 173 °C. Changes in ΔT were modulated by varying both resting and liquidus temperatures, the latter via the melt-H2O content of the experiments. The resting temperature was retained for 24 h to ensure the attainment of near-equilibrium conditions. High-resolution elemental mapping reveals the distribution of trace elements in individual clinopyroxene zones. Increasing ΔT drives a shift from polyhedral morphologies with Al-rich prism and Al-poor hourglass sectors (ΔT = 23–25 °C), to skeletal (ΔT = 75–123 °C) and dendritic (ΔT = 132–173 °C) crystals with Al-rich skeletons and Al-poor overgrowths. Aluminium-rich zones have higher concentrations of rare earth elements (REE) and high field strength elements (HFSE) than Al-poor zones across all investigated ΔT conditions, and overall, Al, REE and HFSE contents increase with ΔT. This indicates that tetrahedral aluminium (TAl) and associated charge-balancing mechanisms govern the incorporation of REE and HFSE within clinopyroxene. Lattice strain parameters for REE in the M2 site indicate the incorporation of light relative to heavy REE in clinopyroxene is controlled by competing effects between the strain-free partition coefficient, D0, and the optimum cation radius, r0. Critically, the middle and heavy REE switch from incompatible to compatible with increasing ΔT. Used to model fractional crystallisation, our data demonstrate that fractionation of clinopyroxene at low ΔT controls pre-eruptive melt evolution. Importantly, this indicates crystallisation of clinopyroxene in the deep portions of Mt. Etna’s plumbing system is not rapid and is unlikely to result in the early formation of dendrites. We develop a parameterisation of ΔT based on REE partitioning between experimental clinopyroxene and coexisting melt, which can be applied to sector-zoned augite crystallising from mafic alkaline magmas, to reconstruct dynamic processes and thermal pathways during magma transport and storage. Applied to sector-zoned clinopyroxene microphenocrysts and groundmass microcrysts from the 1974 eccentric eruption at Mt. Etna, our parameterisation tracks an increase in ΔT with magma ascent and eruption, following recharge of Cr-rich mafic magma at depth. Sector-zoned clinopyroxene can track ΔT variations leading to volcanism at Mt. Etna and could be applied to quantify magma dynamics in other active volcanoes.
    Description: This work was supported by a Foundation Research Excellence Award from The University of Queensland (UQ-FREA RM2019001828, T.U.), the Advance Queensland Women’s Research Assistance Program from the Queensland Government (WRAP109-2019RD1 RM2020002371, T.U.) and the HP-HT laboratory of Experimental Geophysics and Volcanology (INGV, Rome). A.M. was supported by the Australian Government Research Training Program (RTP). S.M, M.M. and A.P. were supported by the MIUR project “Time scales of solidification in magmas: Applications to Volcanic Eruptions, Silicate Melts, Glasses, Glass- Ceramics” (PRIN 2017J277S9).
    Description: Published
    Description: 249-268
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Clinopyroxene ; Sector Zoning ; Trace element partitioning ; Undercooling ; Dendritic crystals ; Rare earth elements ; LA ICP-MS Mapping ; Mt. Etna ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-09-05
    Description: The chemical composition of gases emitted by active volcanoes reflects both magma degassing and shallower processes, such as fluid-rock hydrothermal interaction and mixing with atmospheric-derived fluids. Untangling the magmatic fluid endmember within surface gas emission is therefore challenging, even with the use of well-known magma degassing tracers such as noble gases. Here, we investigate the deep magmatic fluid composition at the Nisyros caldera (Aegean Arc, Greece) by measuring nitrogen and noble gas abundances and isotopes in naturally degassing fumaroles. Gas samples were collected from 32 fumarolic vents at water-boiling temperature between 2018 and 2021. These fumaroles are admixtures of magmatic fluids typical of subduction zones, groundwater (or air saturated water, ASW), and air. The N2, He, and Ar composition of the magmatic endmember is calculated by reverse mixing modeling and shows N2/He = 31.8 ± 4.5, N2/Ar = 281.6, d15N = +7 ± 3 ‰, 3He/4He = 6.2 Ra (where Ra is air 3He/4He), and 40Ar/36Ar = 551.6 ± 19.8. Although N2/He is significantly low with respect to typical values for arc volcanoes (1,000–10,000), the contribution of subducted sediments to the Aegean Arc magma generation is reflected by the positive d15N values of Nisyros fumaroles. The low N2/He ratio indicates N2-depletion due to solubility-controlled differential degassing of an upper-crustal silicic (dacitic/rhyodacitic) melt in a high-crystallinity reservoir. We compare our 2018–2021 data with N2, He, and Ar values collected from the same fumaroles during a hydrothermal unrest following the seismic crisis in 1996–1997. Results show additions of both magmatic fluid and ASW during this unrest. In the same period, fumarolic vents display an increase in magmatic species relative to hydrothermal gas, such as CO2/CH4 and He/CH4 ratios, an increase of 50 C in the equilibrium temperature of the hydrothermal system (up to 325 C), and greater amounts of vapor separation. These variations reflect an episode of magmatic fluid expulsion during the seismic crisis. The excess of heat and mass supplied by the magmatic fluid injection is then dissipated through boiling of deeper and peripheral parts of the hydrothermal system. Reverse mixing modeling of fumarolic N2-He-Ar has therefore important ramifications not only to disentangle the magmatic signature from gases emitted during periods of dormancy, but also to trace episodes of magmatic outgassing and better understand the state of the upper crustal reservoir.
    Description: Published
    Description: 68-84
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Noble gases ; Nitrogen isotope ; Mixing modeling ; Magmatic degassing ; High-crystallinity mush ; Caldera ; Unrest ; CO2 ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-20
    Description: In active volcanic environments magmas that ascend within the conduit and erupt at the surface as lava flows experience physico-chemical perturbations related to temperature changes and variable degrees of deformation. We have conducted experimental investigations to examine the concurrent effects of undercooling and stirring on the crystallization kinetics of a leucite-bearing phonotephrite from Somma-Vesuvius (Italy). Two sets of undercooling experiments have been carried out within the same temperature range of 1300–1150 °C. The first set involved classical static undercooling (SU) experiments with no stirring applied to the melt, while the second set involved dynamic undercooling (DU) experiments with a shear strain rate of 1 s−1 applied. By comparing SU and DU results with previous data from literature obtained using the same experimental approach, we observe that the degree of crystallization and the textural evolution of leucite and clinopyroxene progress upon the effect of melt stirring by shortening the incubation time. As a result, the solidification process is markedly enhanced in DU experiments, accompanied by a substantial increase in the crystal nucleation density and growth rate. Thermorheological modeling indicates that stirring-induced crystallization increases the melt viscosity by a factor of ∼1.5–4.5 depending on the system temperature. At a given temperature, mass transport can therefore produce higher crystallinity and higher viscosity magmatic suspensions than static crystallization conditions. We document that if subsequent cooling occurs, the existing crystal cargo in such suspensions may promote the onset of non-Newtonian rheological response, causing a transition from homogeneous viscous flow to shear localization and magma/lava rupture.
    Description: Published
    Description: 121682
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: crystallization ; shear rate ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-26
    Description: Mafic alkaline magmas, such as those feeding the persistent eruptive activity of Stromboli and Mt. Etna volcanoes in Italy, are dominated by the crystallization of plagioclase via cooling and degassing phenomena related to the dynamics of shallow crustal reservoirs and eruptive conduits. Because plagioclase textures and compositions are extremely sensitive to the changes of intensive variables in subvolcanic plumbing systems, the phenomenological variability of erupted crystals preserves detailed evidence of complex growth histories. From this point of view, we reappraise the textural maturation and compositional complexity of plagioclase by allying thermodynamic and kinetic principles to natural and experimental observations, with the purpose of drawing up guidelines for reconstructing magma dynamics in mafic alkaline volcanic settings. A multifaceted statistical method is adopted to parameterize the decay of crystal growth rate with increasing crystallization time, as relaxation kinetics prevails over melt supersaturation effects. This model parameterization is combined with the textural analysis of natural plagioclase crystals to quantify the residence time of phenocrysts in equilibrium with magmas at Stromboli and Mt. Etna and/or the timescale of rapid microlite growth during disequilibrium ascent of magmas within the conduit. The role played by temperature and melt-water content on plagioclase components and major cation substitution mechanisms is also evaluated under both isobaric-isothermal and decompression conditions. The emerging paradigm is that the influence of dissolved water on anorthite-albite exchange between plagioclase and melt is overwhelmingly mitigated by changes in temperature at conditions of P = 30–300 MPa, T = 1050–1150 °C, fO2 = NNO + 1.9-NNO + 2.3, and melt-H2O = 0.6–4.4 wt%. As a corollary, anorthite and albite melt activities are almost fully encapsulated in the variation of anhydrous melt components as the crystallization of plagioclase proceeds during magma cooling. Following this line of reasoning, we propose an integrated modeling approach to decipher complex zoning patterns in natural plagioclase phenocrysts from mafic alkaline eruptions. Key findings from our re-assessment of equilibrium, thermometric, and hygrometric models indicate that temperature and dissolved water can be iteratively estimated for different plagioclase textural patterns if crystals are sufficiently strongly zoned and probability-based criteria are applied to determine the maximum probability distribution from kernel density analysis.
    Description: Natural Environment research Council UK grant NE/T009292/1; INGV Progetti Ricerca Libera 2019 Grant #52/2020; INGV Departmental Strategic Project UNO; PRIN MIUR Grant #2017J277S9_004.
    Description: Published
    Description: 104399
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Mafic alkaline magmas ; Plagioclase growth rate parameterization ; Plagioclase-based thermometry and hygrometry ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...