ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-16
    Description: The temporal evolution of effusion rate is the main controlling factor of lava spreading and emplacement conditions. Therefore, it represents the most relevant parameter for characterizing the dynamics of effusive eruptions and thus for assessing the volcanic hazard associated with this type of volcanism. Since the effusion rate curves can provide important insights into the properties of the magma feeding system, several efforts have been performed for their classification and interpretation. Here, a recently published numerical model is employed for studying the effects of magma source and feeding dike properties on the main characteristics (e.g., duration, erupted mass, and effusion rate trend) of small‐volume effusive eruptions, in the absence of syn‐eruptive magma injection from deeper storages. We show that the total erupted mass is mainly controlled by magma reservoir conditions (i.e., dimensions and overpressure) prior to the eruption, whereas conduit processes along with reservoir properties can significantly affect mean effusion rate, and thus, they dramatically influence eruption duration. Simulations reproduce a wide variety of effusion rate trends, whose occurrence is controlled by the complex competition between conduit enlargement and overpressure decrease due to magma withdrawal. These effusion rate curves were classified in four groups, which were associated with the different types described in the literature. Results agree with the traditional explanation of effusion rate curves and provide new insights for interpreting them, highlighting the importance of magma reservoir size, initial overpressure, and initial width of the feeding dike in controlling the nature of the resulting effusion rate curve.
    Description: Published
    Description: e2019JB01930
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: effusive eruption ; basaltic eruptions ; numerical modeling ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-30
    Description: Soil CO2 flux and 222Rn activity measurements may positively contribute to the geochemicalmonitoring of active volcanoes. The influence of several environmental parameters on the gas signals has been substantially demonstrated. Therefore, the implementation of tools capable of removing (or minimising) the contribution of the atmospheric effects from the acquired time series is a challenge in volcano surveillance. Here, we present 4 years-long continuousmonitoring (fromApril 2007 to September 2011) of radon activity and soil CO2 flux collected on the NE flank of Stromboli volcano. Both gases record higher emissions during fall–winter (up to 2700 Bq * m−3 for radon and 750 g m−2 day−1 for CO2) than during spring–summer seasons. Short-time variations on 222Rn activity aremodulated by changes in soil humidity (rainfall), and changes in soil CO2 flux that may be ascribed to variations in wind speed and direction. The spectral analyses reveal diurnal and semi-diurnal cycles on both gases, outlining that atmospheric variations are capable to modify the gas release rate fromthe soil. The long-termsoil CO2 flux shows a slow decreasing trend, not visible in 222Rn activity, suggesting a possible difference in the source depth of the of the gases, CO2 being deeper and likely related to degassing at depth of the magma batch involved in the February–April 2007 effusive eruption. To minimise the effect of the environmental parameters on the 222Rn concentrations and soil CO2 fluxes, two different statistical treatments were applied: the Multiple Linear Regression (MLR) and the Principal Component Regression (PCR). These approaches allow to quantify theweight of each environmental factor on the two gas species and showa strong influence of some parameters on the gas transfer processes through soils. The residual values of radon and CO2 flux, i.e. the values obtained after correction for the environmental influence, were then compared with the eruptive episodes that occurred at Stromboli during the analysed time span (2007–2011) but no clear correlations emerge between soil gas release and volcanic activity. This is probably due to i) the distal location of the monitoring stations with respect to the active craters and to ii) the fact that during the investigated period no major eruptive phenomena (paroxysmal explosion, flank eruption) occurred. Comparison of MLR and PCR methods in time-series analysis indicates thatMLR can bemore easily applied to real time data processing in monitoring of open conduit active volcanoes (like Stromboli) where the transition to an eruptive phase may occur in relatively short times.
    Description: This researchwas partly funded by ItalianMinistry of University and Research (MIUR) and by University of Torino-Fondazione Compagnia di San Paolo. Additional fundswere provided by the Italian “Presidenza del Consiglio dei Ministri–Dipartimento della Protezione Civile (DPC)” through the DEVnet Project (a cooperative program between the Departments of Earth Sciences of the University of Torino and the University of Florence) and through the “Potenziamento Monitoraggio Stromboli” project. Additional funds for improving our computing hardware were provided by Fondazione Cassa di Risparmio di Torino.
    Description: Published
    Description: 65-78
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Stromboli volcano ; Continuous geochemical monitoring ; Soil CO2 flux ; Radon activity ; Environmental parameters ; Time series analyses ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-03-05
    Description: During the emplacement of the 2014-2015 lava flow in Holuhraun (Iceland) a new code for the simulation of lava flows (MrLavaLoba) was developed and tested. MrLavaLoba is a probabilistic code which derives the area likely to be inundated and the thickness of the final lava deposit. The flow field in Holuhraun progressed through a fairly flat floodplain, and the initial limited availability of topographic data was challenging, forcing us to develop specific modeling strategies. The development of the code, as well as simulation tests, continued after the end of the eruption, and latest results largely benefitted from the availability of improved topographic data. MrLavaLoba simulations of the Holuhraun scenario are compared with detailed observational analyses derived from the literature. The obtained results highlight that small-scale morphological features in the preemplacement topography can strongly influence the propagation of the flow. The distribution of the volume settling throughout the extension of the flow field turned out to be very important, and strongly affects the fit between the simulated and the real extent of the flow field. The performed analysis suggests that an improvement in the code should allow adaptable calibration during the course of the eruption in order to mimic different emplacement styles in different phases.
    Description: Published
    Description: VO228
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: lava flow ; Holuhraun ; 04.08. Volcanology ; 05.01. Computational geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-17
    Description: Satellite‐based surveillance of volcanic hot spots and plumes can be coupled with modeling to allow ensemble‐based approaches to crisis response. We complete benchmark tests on an effusive crisis response protocol aimed at delivering product for use in tracking lava flows. The response involves integration of four models: MIROVA for discharge rate (TADR), the ASTER urgent response protocol for delivery of high‐spatial resolution satellite data, DOWNFLOW for flow path projections, and PyFLOWGO for flow run‐out. We test the protocol using the data feed available during Piton de la Fournaise’s April–May 2018 eruption, with product being delivered to the Observatoire du Piton de la Fournaise via Google Drive. The response was initialized by an alert at 19:50Z on 27 April 2018. Initially DOWNFLOW‐FLOWGO were run using TADRs typical of Piton de la Fournaise, and revealed that flow at 〉120 m 3 /s could reach the island belt road. The first TADR (10– 20 m 3 /s) was available at 09:55Z on 28 April, and gave flow run‐outs of 1180–2510 m. The latency between satellite overpass and TADR provision was 105 minutes, with the model result being posted 15 minutes later. An InSAR image pair was completed six hours after the eruption began, and gave a flow length of 1.8 km; validating the run‐out projection. Thereafter, run‐outs were updated with each new TADR, and checked against flow lengths reported from InSAR and ASTER mapping. In all, 35 TADRs and 15 InSAR image pairs were processed during the 35‐day‐long eruption, and 11 ASTER images were delivered.
    Description: Published
    Description: VO230
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-24
    Description: During emplacement, lavas modify the pre-existing topography and release a large amount of heat. In spite of the relevance of both heat and mass release, combined scale. Here, we consider a channelised lava flow unit formed at Mt Etna during the 2001 flank eruption, and we show that, by combining a morphological analysis of the pre- and post-emplacement topography with the analysis of the syn-eruptive thermal signature, critical insights about the processes driving mass and heat dissi- pation can be derived. Our results suggest that, in the considered lava flow, the pre-emplacement slope controls heat dissipation and can influence the thickness of the final lava deposit, with possible implications for hazard assessment. The width of the lava channel, instead, appears less sensitive to the pre-emplacement slope, and tends to regularly increase with increasing distance from the vent.
    Description: European Science Foundation, Grant/Award Number: 6409
    Description: Published
    Description: 215-221
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Lava flows ; Mount Etna ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-08
    Description: This study combines volcanic gas compositions, SO2 flux and satellite thermal data collected at Nevado del Ruiz between 2018 and 2021. We find the Nevado del Ruiz plume to have exhibited relatively steady, high CO2 compositions (avg. CO2/ST ratios of 5.4 ± 1.9) throughout. Our degassing models support that the CO2/ST ratio variability derives from volatile exsolution from andesitic magma stored in the 1-4 km depth range. Separate ascent of CO2-rich gas bubbles through shallow (〈 1 km depth), viscous, conduit resident magma causes the observed excess degassing. We infer that degassing of ~ 974 mm3 of shallow (1-4 km) stored magma has sourced the elevated SO2 degassing recorded during 2018-2021 (average flux ~ 1548 t/d). Of this, only 〈 1 mm3 of magma have been erupted through dome extrusion, highlighting a large imbalance between erupted and degassed magma. Escalating deep CO2 gas flushing, combined with the disruption of passive degassing, through sudden accumulation and pressurization of bubbles due to lithostatic pressure, may accelerate volcanic unrest and eventually lead to a major eruption.
    Description: Published
    Description: 1230
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-08
    Description: Bagana is a remote, highly active volcano, located on Bougainville Island in southeastern Papua New Guinea. The volcano has exhibited sustained and prodigious sulfur dioxide gas emissions in recent decades, accompanied by frequent episodes of lava extrusion. The remote location of Bagana and its persistent activity have made it a valuable case study for satellite observations of active volcanism. This remoteness has also left many features of Bagana relatively unexplored. Here, we present the first measurements of volcanic gas composition, achieved by unoccupied aerial system (UAS) flights through the volcano's summit plume, and a payload comprising a miniaturized MultiGAS. We combine our measurements of the molar CO2/SO2 ratio in the plume with coincident remote sensing measurements (ground- and satellite-based) of SO2 emission rate to compute the first estimate of CO2 flux at Bagana. We report low SO2 and CO2 fluxes at Bagana from our fieldwork in September 2019, ∼320 ± 76 td −1 and ∼320 ± 84 td −1, respectively, which we attribute to the volcano's low level of activity at the time of our visit. We use satellite observations to demonstrate that Bagana's activity and emissions behavior are highly variable and advance the argument that such variability is likely an inherent feature of many volcanoes worldwide and yet is inadequately captured by our extant volcanic gas inventories, which are often biased to sporadic measurements. We argue that there is great value in the use of UAS combined with MultiGAS-type instruments for remote monitoring of gas emissions from other inaccessible volcanoes.
    Description: BMK, EJL, and AA acknowledge the financial support of the Alfred P Sloan foundation, awarded via the Deep Carbon Observatory. TR acknowledges funding via the CASCADE programme, EPSRC Programme Grant EP/R009953/1. CIS acknowledges the financial support of the New Zealand Earthquake Commission.
    Description: Published
    Description: e2022GC010786
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: JCR Journal
    Keywords: Volcanic gas ; UAS ; Bagana Volcano ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...