ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-16
    Description: High strain rates and intense seismic activity characterize both the boundaries and the interior of the Aegean–Anatolian plate: the availability of geodetic and geophysical data makes this region ideal to make detailed models of continental deformation. Although the deformation occurring in the Aegean–Anatolian plate may be regarded as the primary effect of the Arabian indenter push, it has already been demonstrated that this mechanism cannot account for the observed extrusion/rotation of the whole plate. We investigate the present-day steady-state anelastic deformation of the Aegean–Anatolian plate by a thin plate thermomechanical finite element (FE) model that accounts for realistic rheological mechanisms and lateral variations of lithospheric properties. Studying the region with uniform models, where average values for thermal and geometric parameters are chosen, we find that two tectonic features, in addition to the Arabian plate push, are critical to reproduce a velocity field that gives a reasonable fit to the observations. The first is the E–W constraint of NW continental Greece, related to the collision between the Aegean–Anatolian plate and the Apulia–Adriatic platform, required in the model to attain the SW orientation of the velocity field along the Hellenic Arc. The second is the trench suction force (TSF) due to subduction of the African lithosphere, which is needed to fit the observed mean extrusion velocity of 30 mm yr−1 along the Hellenic Arc. Uniform models are useful to study the sensitivity to the interplay of rheological/thermal parameters in a simplified framework but, in all cases, predict a strong deformation localized along the Hellenic Arc, whereas geodetic and seismological data show that the highest strain rates are located in western Anatolia. Furthermore, uniform models are non-unique in the sense that since we model a vertically averaged thin plate, different thermal and rheological parameters can be combined to yield the same lithospheric strength. We account for internal sources of deformation with heterogeneous models, where the available constraints on lateral variations of crustal thickness and surface heat flow have been included. The heterogeneous distribution of lithospheric strength contributes to ameliorate the fit to geodetic and stress data, since the predicted velocity field is characterized by an acceleration from E to W, with a sharp increase in the proximity of the western margin of the Anatolian peninsula, where the highest rates of intraplate deformation are observed. In our model this partitioning of the deformation is due to the different rheology of the Aegean Sea, which, being slightly deformable, transmits the TSF to the western margin of Anatolia. Our results are consistent with the interpretation of the Aegean–Anatolian system as a single, rheologically heterogeneous plate.
    Description: Published
    Description: 760-780
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Rheology ; Tectonics ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-16
    Description: We revisit the problem of inferring mantle viscosity from postglacial relative sea level (RSL) data across the Hudson Bay. We invert a recently revised data set using the Metropolis algorithm together with an annealing schedule: this method, which is well established in geophysics, is applied here for the first time to the glacial isostatic adjustment problem. The Metropolis algorithm performs a search, which is not limited to downhill moves in the model space and thus is less influenced by local minima of the misfit than traditional inverse approaches. Furthermore, its CPU requirements are far superior to Monte Carlo methods. The major drawbacks include slow convergence and the need for careful tuning of crucial variables such as the temperature schedule and the increment in the model space. When all the Hudson Bay RSL data are considered, and the viscosity of the upper mantle above the 670 km discontinuity is inverted, the best fitting solution is characterized by a viscosity close to 2 × 10^20 Pa s. However, when the shallow upper mantle and transition zone viscosity are separately inverted, other less traditional solutions with a more complex viscosity structure are found to be equally possible. A stable feature is the lower mantle viscosity, which is generally found to be close to the value of 10^21 Pa s in all of the stochastic inversions we have performed. The solutions agree with previous findings concerning both postglacial rebound observables and global geodynamics signatures.
    Description: Published
    Description: 2352
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Postglacial Rebound ; Mantle Viscosity ; Simulated Annealing ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-16
    Description: Recent satellite geodetic measurements help to clearly define the velocity field in the Aegean-Anatolian area. The velocity field can be broadly characterized by anticlockwise rotation of this region relative to Eurasia, around a pole located at Lat. 32.73, Long. 32.03, north of the Egyptian shoreline. Studies of the fault kinematics in the region also provide information on the time evolution of the stress field. In this work, we model deformation in the Aegean-Anatolian region to better understand the tectonic origin of the observed stress and velocity fields. We found that the observed deformation pattern can be well reproduced by imposing simple boundary conditions including: (1) northward displacement of the Arabian plate, (2) locking of eastward motion in northwestern Greece and (3) suction force at the Hellenic trench. The observed variation in the stress field occurred at 0.9 Ma can be partially explained by a change in the activity of the North Anatolian fault.
    Description: Published
    Description: 2087-2090
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Plate Motion ; Continental tectonics ; Dynamics of lithosphere and mantle ; Plate boundary ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...