ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.06. Seismology  (1)
  • Macroseismic data  (1)
  • circular source  (1)
  • circular-source model  (1)
  • crustal propagation  (1)
  • earthquake swarm  (1)
  • finite-difference method  (1)
Collection
Publisher
  • 1
    Publication Date: 2022-06-10
    Description: This paper presents the main recent results obtained by the seismological and geophysical monitoring arrays in operation in the rift of Corinth, Greece. The Corinth Rift Laboratory (CRL) is set up near the western end of the rift, where instrumental seismicity and strain rate is highest. The seismicity is clustered between 5 and 10 km, defining an active layer, gently dipping north, on which the main normal faults, mostly dipping north, are rooting. It may be interpreted as a detachment zone, possibly related to the Phyllade thrust nappe. Young, active normal faults connecting the Aigion to the Psathopyrgos faults seem to control the spatial distribution of the microseismicity. This seismic activity is interpreted as a seismic creep from GPS measurements, which shows evidence for fast continuous slip on the deepest part on the detachment zone. Offshore, either the shallowest part of the faults is creeping, or the strain is relaxed in the shallow sediments, as inferred from the large NS strain gradient reported by GPS. The predicted subsidence of the central part of the rift is well fitted by the new continuous GPS measurements. The location of shallow earthquakes (between 5 and 3.5 km in depth) recorded on the on-shore Helike and Aigion faults are compatible with 50° and 60° mean dip angles, respectively. The offshore faults also show indirect evidence for high dip angles. This strongly differs from the low dip values reported for active faults more to the east of the rift, suggesting a significant structural or rheological change, possibly related to the hypothetical presence of the Phyllade nappe. Large seismic swarms, lasting weeks to months, seem to activate recent synrift as well as pre-rift faults. Most of the faults of the investigated area are in their latest part of cycle, so that the probability of at least one moderate to large earthquake (M = 6 to 6.7) is very high within a few decades. Furthermore, the region west to Aigion is likely to be in an accelerated state of extension, possibly 2 to 3 times its mean interseismic value. High resolution strain measurement, with a borehole dilatometer and long base hydrostatic tiltmeters, started end of 2002. A transient strain has been recorded by the dilatometer, lasting one hour, coincident with a local magnitude 3.7 earthquake. It is most probably associated with a slow slip event of magnitude around 5 ± 0.5. The pore pressure data from the 1 km deep AIG10 borehole, crossing the Aigion fault at depth, shows a 1 MPa overpressure and a large sensitivity to crustal strain changes.
    Description: Published
    Description: 7-30
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: 04.06. Seismology ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1420-9136
    Keywords: Macroseismic data ; synthetic isoseismals ; focal mechanism ; earthquake swarm ; circular-source model ; local geological conditions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The main shock of the West-Bohemian earthquake swarm, Czechoslovakia, (magnitudem=4.5, depthh=10 km) exhibits an irregular areal distribution of macroseismic intensities 6° to 7° MSK-64. Four lobes of the 6° isoseismal are found and the maximum observed intensity is located at a distance of 8 km from the instrumentally determined epicentre. This distribution can be explained by the energy flux of the directS wave generated by a circular source, the hypocentral location and focal mechanism of which are taken from independent instrumental studies. The theoretical intensity, which is assumed to be logarithmically proportional to the integrated squared ground-motion velocity (i.e.,I=const+log ∫v 2 (t)dt), fits the observed intensity with an overall root-mean-square error less than 0.5°. It is important that the present intensity data can also be equally well explained by the isotropic source. The fit was attained by means of a horizontally layered model though large fault zones and an extended sedimentary basin suggest a significant lateral heterogeneity of the epicentral region. The results encourage a broader application of the simple modelling technique used.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 130 (1989), S. 83-97 
    ISSN: 1420-9136
    Keywords: macroseismic data ; focal mechanism ; circular source ; energy flow ; directivity ; local effects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A simple method is presented for the computation of theoretical models of the macroseismic field, approximately valid close to the epicentre of a weak crustal earthquake. It is assumed that the intensity is logarithmically proportional to the energy flux of a complete directS wave. A circular source is used, whose energy-flux directivity is weak and thus simply predictable. The focal mechanism influences the solution through standard far-field double-couple radiation patterns. For the wave propagation in the layered crust the ray method is used, and a simple absorption correction is applied. Conversion coefficients at the earth's surface are included. To speed up repeated computations of the theoretical macroseismic fields for varying focal mechanisms, the ray quantities are computed (and stored) separately. This makes the program fast and simple enough even for routine applications on small microcomputers, whenever observed macroseismic fields, focal mechanisms, and hypocentre locations need joint interpretation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 137 (1991), S. 63-84 
    ISSN: 1420-9136
    Keywords: Seismic ground motions ; local site effects ; test sites ; predictions and observations ; finite-difference method ; time histories ; response spectra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Results of a single group participating in an international experiment are analyzed. The experiment served to verify computational predictions of the ground-motion variations due to near-surface geological effects at a site established for that purpose by the California Department of Conservation. Based on an acceleration record at a rock location, and geotechnical model of medium, records at the other locations of a nearby sedimentary deposit were predicted. A 2-D finite-difference sensitivity analysis suggested that the lateral wave-propagation effects are negligibly small, and locally 1-D computations are sufficient for the present site. Those computations are compared with observations not available to the authors during the “blind” prediction. Peak accelerations, peak velocities and RMS accelerations were predicted with errors less than 159%, 114% and 62%, respectively. Maxima of the response spectra were fitted within a factor of 2. The predicted and observed Husid's plots (i.e., the normalized cumulative plots of the acceleration squared) have the correlation coefficients ≥0.98. The detected misfits do not show any simple relation to the instrument location, component, frequency, or time.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of seismology 2 (1998), S. 337-349 
    ISSN: 1573-157X
    Keywords: crustal propagation ; Discrete Wwavenumber ; Empirical Green's ; rupture propagation ; seismic source ; site effects ; strong
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A damaging earthquake occurred on 14 July 1993 in Patras, Western Greece. The mainshock (local magnitude 5.1) was followed on the same day by two aftershocks of magnitudes 4.4 ML and 3.6 ML, respectively. The strong motion record of the mainshock is studied, based on the teleseismically determined seismic moment and focal mechanism. The Discrete Wavenumber (DW) and Empirical Green's Function (EGF) methods are used. The main conclusion is that the 1993 Patras mainshock had a complex S-wave group mainly due to structural (path and site) effect. However, some effects of the rupture stopping on the peak ground acceleration (0.2 g in the so-called S3 phase) cannot be ruled out. Two values of the source radius are suggested: R = 1.9 and 3.0 km. The strong motion record better agrees with R = 1.9 km. If the latter is true, the stress drop was of the order of 20 MPa, i.e., higher than often reported for comparable events in Western Greece. Regardless of the true source radius, the ratio of stress drops between the mainshock and aftershocks was about 1–2. The aftershock waveforms indicate significant lateral heterogeneities around Patras. Therefore, the ground-motion predictions of strong events in the area will remain highly non-unique until weak events from an immediate neighbourhood of the particular fault are recorded.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...