ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismology  (2)
  • 04.03. Geodesy  (1)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-06-13
    Description: Abstract
    Description: Raw-, SEG-Y and other supplementary data of the landside deployment from the amphibious wide-angle seismic experiment ALPHA are presented. The aim of this project was to reveal the crustal and lithospheric structure of the subducting Adriatic plate and the external accretionary wedge in the southern Dinarides. Airgun shots from the RV Meteor were recorded along two profiles across Montenegro and northern Albania.
    Keywords: Seismology ; Adriatic Plate ; Montenegro ; Albania ; CONTROLLED_SOURCE_SEISMOLOGY 〉 REFRACTION ; CONTROLLED_SOURCE_SEISMOLOGY 〉 WIDE-ANGLE_REFLECTION_REFRACTION ; CONTROLLED_SOURCE_SEISMOLOGY 〉 AIRGUN_SOURCE ; CONTROLLED_SOURCE_SEISMOLOGY 〉 REGIONAL_SCALE ; CONTROLLED_SOURCE_SEISMOLOGY 〉 DSS ; SENSOR 〉 GEOPHONE ; SENSOR 〉 3-C ; AMPHIBIOUS ; MINISEED_DATA_FORMAT ; SEISMIC_WAVEFORM_DATA ; CONTROLLED_SOURCE_SEISMOLOGY 〉 RAW_DATA ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-05
    Description: The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps–Apennines–Carpathians–Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.
    Description: Published
    Description: 1009–1033
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Seismology ; Alps ; Seismic network ; Geodynamics ; Seismic imaging ; Mountain building
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-25
    Description: The southeastern flank of Etna volcano slides into the Ionian Sea at rates of centimeters per year. The prevailing understanding is that pressurization of the magmatic system, and not gravitational forces, controls flank movement, although this has also been proposed. So far, it has not been possible to separate between these processes, because no data on offshore deformation were available until we conducted the first long-term seafloor displacement monitoring campaign from April 2016 until July 2017. Unprecedented seafloor geodetic data reveal a 〉4-cm slip along the offshore extension of a fault related to flank kinematics during one 8-day-long event in May 2017, while displacement on land peaked at ~4 cm at the coast. As deformation increases away from the magmatic system, the bulk of Mount Etna's present continuous deformation must be driven by gravity while being further destabilized by magma dynamics. We cannot exclude flank movement to evolve into catastrophic collapse, implying that Etna's flank movement poses a much greater hazard than previously thought. The hazard of flank collapse might be underestimated at other coastal and ocean island volcanoes, where the dynamics of submerged flanks are unknown.
    Description: Published
    Description: eaat9700
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: seafloor geodesy ; ground deformation ; volcano-tectonics ; fault ; 04.03. Geodesy ; 04.07. Tectonophysics ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...