ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-12-21
    Description: Volcanic ash clouds produced by explosive eruptions represent a strong problem for civil aviation, road transportation and other human activities. Since Etna volcano produced in the last 35 years more the 200 explosive eruptions of small and medium size. The INGV, liable for its volcano monitoring, developed since 2006 a specific system for forecasting and monitoring Etna’s volcanic ash plumes in collaboration with several national and international institutions. Between 12 January 2011 and 31 December 2013 Etna produced forty-six basaltic lava fountains. Every paroxysm produced an eruption column ranging from a few up to eleven kilometers of height above sea level. The ash cloud contaminated the controlled airspace (CTR) of Catania and Reggio Calabria airports and caused tephra fallout on eastern Sicily sometime disrupting the operations of these airports. In order to give prompt and detailed warnings to the Aviation and Civil Protection authorities, ash plumes monitoring at Osservatorio Etneo, the INGV department in Catania, is carried out using multispectral (from visible to infrared) satellite and ground-based video-surveillance images; seismic and infrasound signals processed in real-time, a Doppler RADAR (Voldorad IIB) able to detect the eruption column in all weather conditions and a LIDAR (AMPLE) for retrieving backscattering and depolarization values of the ash clouds. Forecasting is performed running tephra dispersal models using weather forecast data, and then plotting results on maps published on a dedicated website. 24/7 Control Room operators were able to timely nform Aviation and Civil Protection operators for an effective aviation safety management. A variety of multidisciplinary activities are planned in the MED-SUV project with reference to volcanic ash observations and studies. These include: 1) physical and analogue laboratory experiments on ash dispersal and aggregation; 2) integration of satellite data (e.g. METEOSAT, MODIS) and ground- based measurements (e.g., RADAR, LIDAR) of Etna’s volcanic plumes to quantify mass eruption rate, grain-size distribution at source, and ash cloud concentration; 3) improvement of tools and automatic procedures for the short-term forecasting of volcanic ash dispersal by adopting a multi-model and multi-scenario approach; 4) development of short-term forecasting tools able to use direct measurements of the plume and ash cloud in almost real time (now-casting); 5) development of long-term probabilistic ash fallout maps at the supersite volcanoes.
    Description: Published
    Description: Vienna, Austria
    Description: 4V. Vulcani e ambiente
    Description: open
    Keywords: Ash plume monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-27
    Description: RED SEED stands for Risk Evaluation, Detection and Simulation during Effusive Eruption Disasters, and combines stakeholders from the remote sensing, modelling and response communities with experience in tracking volcanic effusive events. The group first met during a three day-long workshop held in Clermont Ferrand (France) between 28 and 30 May 2013. During each day, presentations were given reviewing the state of the art in terms of (a) volcano hot spot detection and parameterization, (b) operational satellite-based hot spot detection systems, (c) lava flow modelling and (d) response protocols during effusive crises. At the end of each pre- sentation set, the four groups retreated to discuss and report on requirements for a truly integrated and operational response that satisfactorily combines remote sensors, modellers and responders during an effusive crisis. The results of collating the final reports, and follow-up discussions that have been on-going since the workshop, are given here. We can reduce our discussions to four main findings. (1) Hot spot detection tools are operational and capable of providing effusive erup- tion onset notice within 15 min. (2) Spectral radiance metrics can also be provided with high degrees of confidence. However, if we are to achieve a truly global system, more local receiving stations need to be installed with hot spot detection and data processing modules running on-site and in real time. (3) Models are operational, but need real-time input of reliable time-averaged discharge rate data and regular updates of digital elevation models if they are to be effective; the latter can be provided by the radar/photogrammetry community. (4) Information needs to be provided in an agreed and standard format following an ensemble approach and using models that have been validated and recognized as trustworthy by the responding authorities. All of this requires a sophisticated and centralized data collection, distribution and reporting hub that is based on a philosophy of joint ownership and mutual trust. While the next chapter carries out an exercise to explore the viability of the last point, the detailed recommendations behind these findings are detailed here.
    Description: Published
    Description: 1-82
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: restricted
    Keywords: effusive eruptions ; volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The interpretation of dynamic processes that occur in volcanic calderas is not simple. The ground deformations and the local seismicity, which in other volcanic contexts are usually regarded as precursors to eruption, in caldera environment in many cases are not followed by any eruption. We formulate a general hypothesis that can explain these behaviors. Our hypothesis is that the intrusion of a sill can be responsible for the dynamics observed during unrest at calderas. In order to investigate the reliability of this hypothesis, we developed a dynamic model of sill intrusion in a shallow volcanic environment. In our model, the sill, fed by a deeper magma reservoir, intrudes below a horizontal elastic plate, representing the overlying rocks, and expands with axisymmetric geometry. The model is based on the numerical solution of the equation for the elastic plate, coupled with a Navier-Stokes equation for simulating the dynamics of the sill intrusion. We performed a number of simulations, with the objective of showing the main features of the model. In the experiments, when the feeding process stops, the vertical movement reverses its trend and the area of maximum uplift undergoes subsidence. Under certain conditions the subsidence can occur even during the intrusion of the sill. The stress field produced by the intrusion is mainly concentrated in a circular zone that follows the sill intrusion front. The features predicted by the model are consistent with many observations carried out on different calderas as reported in the scientific literature.
    Description: Published
    Description: 3986–4000
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: sill intrusion ; caldera ; volcano geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...