ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-12-10
    Description: The most recent eruptive activity of Turrialba volcano began on the 5th of January 2010, after more than a century of dormancy. The fragmentation process and aerodynamic behavior of the ash from Turrialba’s vulcanian eruptions were investigated by combining grain-size, petrography, mineralogy, Scanning Electron Microscopy (SEM) and Energy Dispersive System (EDS) analyses. The ash components include variable percentages of accessory fresh (no necessary juvenile) to hydrothermally altered lithics (15 - 50 % vol.) with hydrothermal minerals (≤ 12 % vol.: anhydrite, gypsum, bassanite, alunite, hexahydrite, pyrite, heulandite, native sulfur), clay minerals (8 - 17 % vol.: montmorillonite, halloysite, allophane), and a smaller quantity of fresh glassy ashes (5 - 49 % vol.) as fragments and shards (3 - 20 % vol. tackylite and 2 - 26 % vol. sideromelane), as well as primary and eroded/recycled phenocrysts (3 - 13 % vol.: 1 - 5% vol. plagioclase, 1 - 7 % vol. pyroxene, 0 - 1 % vol. olivine, 0 - 6 % vol. opaques, cristobalite and tridimite), and xenocrysts (≤ 1 % vol.: riebeckite and biotite). The secondary minerals were sourced from the deeper to surficial hydrothermal system. Textural features identified in ash particles (90 - 350 μm) suggest that they were formed by brittle fragmentation of vesicle-poor magma/water interaction; molten structures seems to be related to the ductile behavior of some fragments, probably due to the high temperature (〉 600 °C) of the fumarolic/magmatic system. The percentage of juvenile components was low (1 - 2 % vol.) at the first opening eruptive phase in January 2010, and it increased steadily until the end of 2016 (ca. 12 - 25 % vol.) . The ash eruptions in the Western Crater from 2014 to 2016 were related to one and later two or three simultaneously active vents fed by distinct conduit branches. The alternation of volcanic explosions (VEI: 0 - 2), from closed conduit and the formation of new craters, to open system with phreatomagmatic events, and the repose intervals (inter-eruptive exhalative degassing), were controlled by the rate at which magma ascended and remained in the volcanic edifice. The recent tephra sequence consists of a complex succession of layers generated by contrasting fragmentation and transportation dynamics. They resulted from fully diluted, low temperature (〈 300 °C), pyroclastic density currents (wet surge deposits), originated by short-lived, singlepulse, column collapse of phreatomagmatic columns, which traveled short distances (〈 1000 m) from the vent area and surmounted topographic obstacles, and simultaneous fallout and ballistic ejecta. The fine material, in continuous suspension within the uppermost part of the convective plume, was dispersed into the atmosphere and finally settled down on the Valle Central. The quiescent phases could be related to a temporal cooling of the magmatic dike system or to a waning of magmatic activity at depth. Sequential fragmentation/transport theory (SFT) was used to decompose grain-size distributions into five different sub-populations. A new way of using the resultant fragmentation coefficient to assign sub-populations to different fragmentation mechanisms, even in cases when modes overlapped, is presented. For the first time the corresponding results are consistent with the phreatomagmatic eruptions, as well as with those derived from ab initio fractal model.
    Description: Published
    Description: 7-60
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: N/A or not JCR
    Keywords: Volcanic ash, vulcanian eruptions, pheatomagmatism, eruptive column collapse, pyroclastic surges, hydrothermal alteration, granulometry, SFT, Turrialba volcano, Costa Rica. ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-01
    Description: A new period of eruptive activity started at Turrialba volcano, Costa Rica, in 2010 after almost 150 years of quiescence. This activity has been characterized by sporadic explosions whose frequency clearly increased since October 2014. This study aimed to identify the mechanisms that triggered the resumption of this eruptive activity and characterize the evolution of the phenomena over the past 2 years. We integrate 3He/4He data available on fumarole gases collected in the summit area of Turrialba between 1999 and 2011 with new measurements made on samples collected between September 2014 and February 2016. The results of a petrological investigation of the products that erupted between October 2014 and May 2015 are also presented. We infer that the resumption of eruptive activity in 2010 was triggered by a replenishment of the plumbing system of Turrialba by a new batch of magma. This is supported by the increase in 3He/4He values observed since 2005 at the crater fumaroles and by comparable high values in September 2014, just before the onset of the new eruptive phase. The presence of a number of fresh and juvenile glassy shards in the erupted products increased between October 2014 and May 2015, suggesting the involvement of new magma with a composition similar to that erupted in 1864–1866. We conclude that the increase in 3He/4He at the summit fumaroles since October 2015 represents strong evidence of a new phase of magma replenishment, which implies that the level of activity remains high at the volcano.
    Description: Published
    Description: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Turrialba volcano ; eruptive activity ; 3He/4He ; fumarole gases ; glassy shards ; juvenile component ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...