ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: It has recently been demonstrated that methane emission from lithosphere degassing is an important component of the natural greenhouse-gas atmospheric budget. Globally, the geological sources are mainly due to seepage from hydrocarbon-prone sedimentary basins, and subordinately from geothermal/volcanic fluxes. This work provides a first estimate of methane emission from the geothermal/volcanic component at European level. In Europe, 28 countries have geothermal systems and at least 10 countries host surface geothermal manifestations (hot springs, mofettes, gas vents). Even if direct methane flux measurements are available only for a few small areas in Italy, a fair number of data on CO2, CH4 and steam composition and flux from geothermal manifestations are today available for 6 countries (Czech Republic, Germany, Greece, Iceland, Italy, Spain). Following the emission factor and area-based approach, the available data have been analyzed and have led to an early and conservative estimate of methane emission into the atmosphere around 10,000 ton/yr (4000–16,000 ton/yr), basically from an area smaller than 4000 km2, with a speculative upper limit in the order of 105 ton/yr. Only 4–18% of the conservative estimate (about 720 ton/yr) is due to 12 European volcanoes, where methane concentration in volcanic gases is generally in the order of a few tens of ppmv. Volcanoes are thus not a significant methane source. While the largest emission is due to geothermal areas, which may be situated next to volcanoes or independent. Here inorganic synthesis, thermometamorphism and thermal breakdown of organic matter are substantial. Methane flux can reach hundreds of ton/yr from small individual vents. Geothermal methane is mainly released in three countries located in the main high heat flow regions: Italy, Greece, and Iceland. Turkey is likely a fourth important contributor but the absolute lack of data prevents any emission estimate. Therefore, the actual European geothermal–volcanic methane emission could be easily projected to the 105 ton/yr levels, reaching the magnitude of some other natural sources such as forest fires or wild animals.
    Description: Published
    Description: 76-86
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Methane ; volcanoes ; Geothermal vents ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Gaseous and liquid hydrocarbons are seeping from sandy sea bottom ~10 m deep, about 2.4 km NNE of Civitanova Marche harbour, in central Adriatic Sea (Italy). We investigated the origin of the gas, the presence of a wide range of aromatic and aliphatic hydrocarbons and trace metals in shallow sediments, as well as the stable carbon and oxygen isotope composition of benthic foraminifera. In absence of detailed seismic images and subsurface geochemical data, we tried to estimate the source rock type and maturity based only on seep gas geochemistry. Molecular and isotopic composition of gas bubbles showed that the CH4-rich gas is thermogenic (d13CCH4 ~ 55‰; d2HCH4 ~ 280‰; C1/(C2 þ C3) 〈 100) with isotopic features that are compatible with low maturity source rocks belonging to the Emma-Scaglia (carbonate source rocks) Petroleum System (Upper Trias to Paleocene). Gas could then be stored in a biodegraded hydrocarbon pool, as suggested by 13C enrichment in propane (d13C3: 24‰) and CO2 (d13CCO2 : þ12‰). Fluid seepage might be due to a local fracture zone corresponding to the intersection of NNWeSSE thrust faults with a NEeSW regional transversal deformation belt. Compared to other shallow marine seeps in Europe, the amount of methane released into the atmosphere is negligible (102e103 kg of CH4 per year); but the seep also releases ethane and propane (103e104 L per year), which are photochemical pollutants and are not emitted by microbial gas seeps. Compared to a reference site one nautical mile far from the seep, the seabed sediments show higher concentrations of various classes of chemicals, such as benzene, toluene and ethylbenzene, semivolatile and non volatile aliphatic hydrocarbons (C10eC40), and phenols (2-methylphenol and 2,4-dichlorophenol). These compounds likely derive from the oil seepage. The sediments at the seepage site and those at the reference site have similar concentrations of trace metals (arsenic, barium, cadmium, chromium, copper, iron, manganese, nickel, lead, vanadium, zinc, mercury), typical of uncontaminated and shallow coastal areas. Finally, we provided the first data on foraminifera associated to thermogenic hydrocarbons. No endemic foraminifera species or authigenic carbonates occur in the sediments. Carbon isotopic composition of Quinqueloculina padana where oil slick prevails is less variable than in the gas bubbling site. However, thermogenic methane and oil do not apparently decrease the d13C value of foraminifera carbonate shell.
    Description: Published
    Description: 283-293
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: restricted
    Keywords: Marine seep ; Thermogenic gas ; Adriatic Sea ; Chemical contaminants ; Foraminifera ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Drylands are considered a net sink for atmospheric methane and a main item of the global inventories of the greenhouse gas budget. It is outlined here, however, that a significant portion of drylands occur over sedimentary basins hosting natural gas and oil reservoirs, where gas migration to the surface takes place, producing positive fluxes of methane into the atmosphere. New field surveys, in different hydrocarbonprone basins, confirm that microseepage, enhanced by faults and fractures in the rocks, overcomes the methanotrophic consumption occurring in dry soil throughout large areas, especially in the winter season. Fluxes of a few units to some tens of mg m−2 day−1 are frequent over oil–gas fields, whose global extent is estimated at 3.5–4.2 million km2; higher fluxes (〉50 mg m−2 day−1) are primarily, but not exclusively, found in basins characterized by macro-seeps. Microseepage may however potentially exist over a wider area (∼8 million km2, i.e. 15% of global drylands), including the Total Petroleum Systems, coal measures and portions of sedimentary basins that have experienced thermogenesis. Based on a relatively large and geographically dispersed data-set (563 measurements) from different hydrocarbon-prone basins in USA and Europe, upscaling suggests that global microseepage emission exceeding 10 Tg year−1 is very likely. Microseepage is then only one component of a wider class of geological sources, including mud volcanoes, seeps, geothermal and marine seepage, which cannot be ignored in the atmospheric methane budget.
    Description: Published
    Description: 265-274
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: microseepage ; methane flux ; soil sink ; drylands ; petroleum ; greenhouse gas ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Macmillan Publishers Limited
    Publication Date: 2017-04-04
    Description: Methane emissions from natural gas reservoirs have long been largely overlooked. The discovery of abundant geological gas seeps in areas of cryosphere degradation highlights the relevance of these emissions to the greenhouse gas budget.
    Description: Published
    Description: 373-374
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: methane ; geologic sources ; emissions ; greenhouse gas ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-04
    Description: Mud volcanoes and microseepage are two important natural sources of atmospheric methane, controlled by neotectonics and seismicity. Petroleum and gas reservoirs are the deep sources, and faults and fractured rocks serve as main pathways of degassing to the atmosphere. Violent gas emissions or eruptions are generally related to seismic activity. The global emission of methane from onshore mud volcanoes has recently been improved thanks to new experimental data sets acquired in Europe and Azerbaijan. The global estimate of microseepage can be now improved on the basis of new flux data and a more precise assessment of the global area in which microseepage may occur. Despite the uncertainty of the various source strengths, the global geological methane flux is clearly comparable to or higher than other sources or sinks considered in the tables of the Intergovernmental Panel on Climate Change.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: methane ; lithosphere degassing ; mudvolcanoes ; greenhouse gas ; geodynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 991883 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-02-16
    Description: The role of mud volcanoes (MVs) as a source of methane(CH4) flux to the atmosphere and the ocean has been increasingly recognised in the last several years (Milkov 2000; Dimitrov 2002, 2003; Etiope and Klusman 2002; Kopf 2002, 2003; Milkov et al. 2003; Etiope and Milkov 2004). In one of the most recent papers, Kopf (2003) claims to report a reliable estimate of the global CH4 emission from MVs. However, the significance and usefulness of the estimate presented by Kopf (2003) are rather poor. The used dataset is smaller than in previous studies (although the author makes a reverse claim), and some previously published works are misquoted and misinterpreted. Numerous arithmetic mistakes made during simple calculations and data manipulations lead to confusing results and conclusions. In this comment, we highlight some of the most significant problems with the estimates published by Kopf (2003).
    Description: Published
    Description: 490-492
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Methane ; mud volcanoes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...