ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-05-12
    Description: Today, satellite remote sensing has reached a key role in Earth Sciences. In particular, Synthetic ApertureRadar (SAR) sensors and SAR Interferometry (InSAR) techniques are widely used for the study of dynamicprocesses occurring inside our living planet. Over the past 3 decades, InSAR has been applied for mappingtopography and deformation at the Earth’s surface. These maps are widely used in tectonics, seismology,geomorphology, and volcanology, in order to investigate the kinematics and dynamics of crustal faulting,the causes of postseismic and interseismic displacements, the dynamics of gravity driven slope failures,and the deformation associated with subsurface movement of water, hydrocarbons or magmatic fluids.
    Description: Published
    Description: 58-82
    Description: 1T. Geodinamica e interno della Terra
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: reserved
    Keywords: SAR ; InSAR ; Earth observation ; Surface displacements ; Satellite missions ; Advanced InSAR ; Earthquake studies ; Volcanic studies ; Tectonic process ; Coseismic studies ; Soil liquefaction ; Post-seismic studies ; Interseismic studies ; Volcanic unrest ; Pre-eruptive phase ; Eruptive phase ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The Indonesian earthquake took place on 26 December 2004 at 00:58 GMT (moment magnitude 9.3) in the Indian Ocean, offshore the west coast of Sumatra, at a depth of about 30 km. This earthquake is one of the largest of the past 100 years, comparable only with those in Chile (1960) and Alaska (1964). The earthquake originated in the subduction zone of the Indian and Burma plates, moving at a relative velocity of 6 cm/year. The aftershocks were distributed along a plate boundary of about 1000–1300km between Sumatra and the Andaman Islands. Some hours after the earthquake a destructive tsunami followed and hit the coastlines of the surrounding regions, causing widespread destruction in Indonesia, India, Thailand and Sri Lanka. The European Space Agency (ESA) made available a data package composed of European Remote Sensing Satellite Synthetic Aperture Radar (ERS-SAR) and Environment Satellite Advanced SAR (ENVISAT-ASAR) data covering the affected area, acquired before (four acquisition dates) and after (five acquisition dates) the earthquake. A total of 26 frames were analysed. We used this dataset to evaluate the effects of the earthquake and tsunami on the human settlements and the physiographic conditions along the coast. The proposed method is based on a visual comparison between pre- and post-seismic SAR intensity images, and on an analysis of their correlation coefficients. No complex data were made available by the ESA to exploit phase coherence. Analysis of pre- and post-earthquake SAR backscattering showed wide uplift areas between the Andaman Islands and Simeulue Island, and large modifications of the coastline of Sumatra. Subsiding areas were detected along the southeast coast of Andaman up to the west coast of Nicobar Island. Tidal effects were filtered out of the SAR images to identify the consequences of the earthquake. Global Positioning System (GPS) stations in the Andaman provided results confirming the surface displacement pattern detected by SAR. The analysis enabled us to draw a boundary line separating the uplift and subsidence.
    Description: Published
    Description: 3891-3910
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: reserved
    Keywords: Remote Sensing ; Synthetic Aperture Radar ; Change Detection ; Earthquake ; Tsunami ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The basic idea of this thesis is to exploit the capabilities of neural networks in a very new framework: the quantitative modelling of the seismic source and the interferogram inversion for retrieving its geometric parameters. The problem can be sum up as follows. When a moderateto- strong earthquake occurs we can apply SAR Interferometry (InSAR) technique to compute a differential interferogram. The latter is used to detect and measure the surface displacement field. The earthquake has been generated by an active, seismogenic, fault having its own specific geometry. Therefore each differential interferogram contains the information concerning the geometry of the seismic source the earthquake comes from; its shape and size, the number of fringes, the lobe orientation and number are the main features of the surface effects field. Two problems have been analysed in this work. The first is the identification of the seismic source mechanism. The second is a typical inversion exercise concerning the fault plane parameter. To perform both exercises of the seismic fault a huge number of synthetic interferograms has been computed. Each of them is generated by a different combination of such geometric parameters. As far as the retrieval of the geometric parameters is concerned an artificial neural network has been properly generated and trained to provide an inversion procedure to single out the geometric parameters of the fault. Five among these latter, Length, Width, Dip, Strike, Depth, have been simultaneously inverted. The result is in agreement with those results based on different approaches. Furthermore the method seems very promising and leads to improve the studies concerning the combined use of neural networks and InSAR technique.
    Description: Tor Vergata University
    Description: Unpublished
    Description: open
    Keywords: Neural networks ; InSAR ; Inversion process ; Sesimic source parameter retrieval ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The magnitude Mw = 7.8 earthquake that struck China's Sichuan region on 12 May 2008 (Figure 1a) has been imaged by the Italian Space Agency's (ASI) Constellation of Small Satellites for the Mediterranean Basin Observation (COSMO-SkyMed radar Earth observation satellites. Five images were available—two preseismic spotlight mode images and three strip-map mode images, two of which are preseismic and one of which is postseismic. We used two strip-map images (acquired 1 month prior to and 3 days after the earthquake) to generate the first ever X-band (i.e., microwave frequency domain, corresponding to about 3-centimeter wavelength) coseismic interferogram, which clearly shows part of the strong ground deformation caused by the fault dislocation. We also performed a change detection analysis of the same data that highlighted several changes in the radar response, presumably due to strong seismic damage, as far as 80 kilometers away from the epicenter.
    Description: Published
    Description: 341-342
    Description: 1.10. TTC - Telerilevamento
    Description: N/A or not JCR
    Description: reserved
    Keywords: Sythetic Aperture Radar ; interferometry ; earthquake ; coseismic deformation ; change detection ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In this paper, we applied the differential interferomet-ric synthetic aperture radar (DInSAR) technique to investigate and measure surface displacements due to the 5.3 ( 5.2), June 21, 2013 earthquake, occurred north of the Apuan Alps (NW Italy), in the discontinuity zone between the Lunigiana and Garfagnana area. Two differential interferograms showing the coseismic displace-ment have been generated using X-band and C-band data, taken from COSMO-SkyMed and RADARSAT-2 satellites, respectively. Both interferograms highlighted a clear pattern of subsidence of few cm located between the Lunigiana and Garfagnana basins. We then modeled the observed SAR deformation fields using the Okada analytical formulation and found them to be consistent with an extensional fault plane dipping toward NW at about 50 . The integrated analysis of DInSAR, geological data, modeling, and historical seismicity suggest that the fault responsible for the June 2013 earthquake corresponds to a breached relay ramp connecting the Lunigiana and Garfagnana seismogenic sources.
    Description: Published
    Description: 2746-2753
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquakes ; inversion modeling ; normal fault ; relay ramp ; remote sensing ; seismogenic source ; surface displacement ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-10-18
    Description: We studied the surface deformations affecting the southeastern sector of the Po Plain sedimentary basin, in particular the area of Bologna. To this aim an advanced DInSAR technique, referred to as DInSAR–SBAS (Small BAseline Subset), has been applied. This technique allows monitoring the temporal evolution of a deformation phenomenon, via the generation of mean deformation velocity maps and displacement time series from a data set of acquired SAR images. In particular, we have processed a set of SAR data acquired by the European Remote Sensing Satellite (ERS) sensors and compared the achieved results with optical levelling measurements, assumed as reference. The surface displacements detected by DInSAR SBAS from 1992 to 2000 are between 10 mm/year in the historical part of Bologna town, and up to 59 mm/year in the NE industrial and agricultural areas. Former measurements from optical levelling referred to 1897 show 2–3 mm/year vertical movements. This trend of displacement increased in the second half of the 20th century and the subsidence rate reached 60 mm/year. We compared the more recent levelling campaigns (in 1992 and late 1999) and DInSAR results from 1992 to 1999. The standard deviation of the difference between levelling data, projected onto the satellite Line Of Sight, and DInSAR results is 2 mm/year. This highlights a good agreement between the measurements provided by two different techniques. The explanation of soil movements based on interferometric results, ground data and geological observations, allowed confirming the anthropogenic cause (surface effect due to the overexploitation of the aquifers) and highlights a natural, tectonic, subsidence.
    Description: Published
    Description: 304-316
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: partially_open
    Keywords: InSAR ; surface deformation ; SAR interferometry ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: This work was aimed at collecting data to estimating the rate of uplift over several temporal scales. The analysis includes a very short-term analysis (tens of years) of InSAR data, a middle-term analysis of Holocene geological data, and a long-term analysis of Middle-Late Pleistocene geological data. After a preliminary reconnaissance in a large area, all final datasets focus strictly on the area of the Crotone Peninsula. The techniques applied span from Small Baseline Subset Interferometric SAR, to classic geomorphic and stratigraphic analysis aided by radiocarbon and U/Th dating.
    Description: Agreement INGV-DPC 2007-2009 Project S1: Analysis of the seismic potential in Italy for the evaluation of the seismic hazard
    Description: Published
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: open
    Keywords: Crotone ; Calabrian Arc ; InSAR ; U/Th dating ; Radiocarbon dating ; Uplift ; coastal terrace ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: In this study the integration of Sentinel-1 InSAR (Interferometric Synthetic Aperture Radar) and GPS (Global Positioning System) data was performed to estimate the three components of the ground deformation field due to the Mw 6.0 earthquake occurred on August 24th, 2014, in the Napa Valley, California, USA. The SAR data were acquired by the Sentinel-1 satellite on August 7th and 31st respectively. In addition, the GPS observations acquired during the whole month of August were analyzed. These data were obtained from the Bay Area Regional Deformation Network, the UNAVCO and the Crustal Dynamics Data Information System online archives. The data integration was realized by using a Bayesian statistical approach searching for the optimal estimation of the three deformation components. The experimental results show large displacements caused by the earthquake characterized by a predominantly NW-SE strike-slip fault mechanism.
    Description: The research has been supported by the “Marco Polo” project by the University of Bologna (UNIBO), the Spanish Ministry of Economy and Competitiveness research project ESP2013-47780-557 C2-1-R and the EU 7th FP MED-SUV project (contract 308665). It is a contribution to the Moncloa Campus of International Excellence.
    Description: Published
    Description: 1-13
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: SAR interferometry ; GPS ; Sentinel-1 ; Earthquake ; 3D displacement ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...