ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics  (3)
  • L'Aquila 2009 earthquake  (2)
  • Seismology  (2)
Collection
Years
  • 1
    Publication Date: 2014-06-21
    Description: Macroseismic intensities are the only available data for most historical earthquakes and often represent the unique source of information for crucial events in the definition of seismic hazard. In this paper, we attempt at getting insight into source characteristics by reproducing the observed intensity field. As a test case, we study the source of 1908 Messina Straits earthquake ( M W  = 7.1), by testing three distinct fault models deduced from the analysis of geodetic data. Starting from the static slip distribution, we develop kinematic source models for the investigated fault and compute full waveform synthetic seismograms in a 1-D structural model, also accounting for anelastic attenuation. Then, we convert both computed peak-ground acceleration (PGA) and peak-ground velocity (PGV) to macroseismic intensity at 100 selected sites, by means of specific empirical relations for the Italian region. By comparing the original data separately with PGA- and PGV-based intensity fields, we discriminate among the tested faults and determine the best values for the investigated kinematic parameters of the source. We also perform a misfit analysis for the best source model, in order to investigate the dependence of the results on the selected parametrization. The results of the analysis indicate that among the tested models, the one characterized by an east-dipping fault, with strike-oriented NS slightly rotated clockwise, better explains the observed macroseismic field of the 1908 Messina Straits earthquake. Besides, the fracture nucleated at the southern end of the fault and ruptured northward, producing considerable directivity effects. This is in agreement with the published results obtained from the investigation of the historical seismograms. We also determine realistic values for the rupture velocity and the rise-time. Our study confirms the great potential of the macroseismic data, demonstrating that they contain enough information to constrain important characteristics of the fault, which can be retrieved by using complex source models and computing complete wavefield. Moreover, we also show that the simultaneous comparison of both PGA- and PGV-based synthetic macroseismic fields with the original intensities provides tighter constraints for discriminating among different source models, with respect to what attainable from each of them.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-10-22
    Description: Preferential direction in rupture propagation of earthquakes is known to have strong consequences on the azimuthal distribution of the ground motion. While source directivity effects are well established for large seismic events, their observation for moderate and small earthquakes are still restricted to a few cases. This is mainly due to intrinsic difficulties in recognizing source directivity unambiguously for less energetic/shorter ruptures. Therefore, we propose the use of multiapproach analysis for revealing the possible directivity for small-to-moderate earthquakes, taking advantage of the different sensitivity of each approach to various source and propagation characteristics. Here, we demonstrate that the application of six diverse and independent methods converges in giving consistent information on the rupture kinematics of the 2013 December 29, M w  = 5.0 earthquake. The results indicate a distinct rupture propagation direction toward S-SW, which correlates with observed asymmetry of damage and felt area. Overall, we conclude that the use of a single technique cannot provide a univocal solution, whereas the application of distinct analyses helps to strongly constrain source kinematics and should be preferred, in particular when dealing with small-to-moderate earthquakes.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We relocate the 1990–1991 Potenza (Southern Apennines belt, Italy) sequences and calculate focal mechanisms. This seismicity clusters along an E–W, dextral strike–slip structure. Secondorder clusters are also present and reflect the activation of minor shears. The depth distribution of earthquakes evidences a peak between 14 and 20 km, within the basement of the subducting Apulian plate. The analysed seismicity does not mirror that of Southern Apennines, which include NW–SE striking normal faults and earthquakes concentrated within the first 15 km of the crust. We suggest that the E–W faults affecting the foreland region of Apennine propagate up to 25 km of depth. The Potenza earthquakes reflect the reactivation of a deep, preexisting fault system. We conclude that the seismotectonic setting of Apennines is characterized by NW–SE normal faults affecting the upper 15 km of the crust, and by E– W deeper strike–slip faults cutting the crystalline basement of the chain.
    Description: Published
    Description: 586-590
    Description: N/A or not JCR
    Description: reserved
    Keywords: Southern Apennines ; seismicity ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 377117 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We modeled Pnl phases from several moderate magnitude earthquakes in the eastern Mediterranean to test methods and develop path calibrations for determining source parameters. The study region, which extends from the eastern part of the Hellenic arc to the eastern Anatolian fault, is dominated by moderate earthquakes that can produce significant damage. Our results are useful for analyzing regional seismicity as well as seismic hazard, because very few broadband seismic stations are available in the selected area. For the whole region we have obtained a single velocity model characterized by a 30 km thick crust, low upper mantle velocities and a very thin lid overlaying a distinct low velocity layer. Our preferred model proved quite reliable for determining focal mechanism and seismic moment across the entire range of selected paths. The source depth is also well constrained, especially for moderate earthquakes.
    Description: Published
    Description: N/A or not JCR
    Description: reserved
    Keywords: Body wave propagation ; earthquake parameters ; lithosphere ; upper-mantle ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 690519 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: On July 23rd 1930, a strong earthquake (Ms=6.6) occurred in the Irpinia region, the most seismically active area of the Southern Apennines (Italy). Destructive effects were reported in a wide area of about 6300 km2, causing more than 1400 victims. The same region had already been struck by several large earthquakes in 1456 (Me=6.9), 1694 (Me=6.0), 1702 (Me=6.0), 1732 (Me=6.6), and 1910 (Me=5.9). Other major events have hit Irpinia since the 1930 earthquake, including that of 1962 (Mw = 6.2) and the catastrophic one of 23 Nov 1980 (Mw = 6.9). Formerly published studies concerning the 1930 Irpinia event include analysis of macroseismic data, first motion polarities and a single station waveforms. By using the available bulletins and the historical seismograms, in our previous study we estimated the source parameters in terms of focal mechanism, magnitude, hypocentral location and seismic moment. Fault length, rupture velocity and other characteristics are also obtained by performing body waveform inversion for moment rate retrieval. These results are here used to study the static stress transfer between the 1930 Irpinia earthquake and subsequent large events like the 1962, and 1980 ones in order to investigate the possible fault interaction and earthquake triggering. To improve our knowledge on the region of the1930 event, we also study the Coulomb stress field related to E-W trending seismogenic sources, responsible for the main sub-events of the multiple 1456 historical earthquake. Modelling of such effects is useful both to obtain more information on seismogenic sources and to gain an improved evaluation of seismic hazard in this region.
    Description: Submitted
    Description: Università di Perugia, Perugia, Italy
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: CFF ; 1930 Irpinia earthquake ; southern Apennines ; southern Italy ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Seismic recordings are immediately available when an earthquake occurs. Their analysis allows the reconstruction of the rupture dynamics by means of sophisticated techniques, which usually need some tests to provide robust results. However, immediate information on the source kinematics is required in order to imagine the fault location and extent and quickly reconstruct the areas of stress release and subsequent accumulation. Very simple analysis may provide useful information, giving insight in source complexity. Right after the 6 April 2009 L'Aquila earthquake (MW = 6.3), we analyzed the seismograms recorded at broadband and strong motion stations and provided firm constraints on rupture kinematics, slip distribution, and static surface deformation, also discriminating the actual fault plane. The fracture occurred in two stages, with initial updip propagation, successively proceeding toward SE, possibly on a different plane. We also analyzed the strongest aftershock (MW = 5.6), showing that useful indications could be retrieved for lower magnitude events.
    Description: Published
    Description: L23305
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: open
    Keywords: L'Aquila 2009 earthquake ; directivity ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy
    Publication Date: 2017-04-04
    Description: To understand the source complexity of the April 6, 2009 L’Aquila earthquake (MW = 6.3), a quick seismological analysis is done on the waveforms of the mainshock and the larger aftershock that occurred on April 7, 2009. We prove that a simple waveform analysis gives useful insights into the source complexity, as soon as the seismograms are available after the earthquake occurrence, whereas the reconstruction of the rupture dynamics through the application of sophisticated techniques requires a definitely longer time. We analyzed the seismograms recorded at broadband and strong motion stations and provided firm constraints on rupture kinematics, slip distribution, and static surface deformation, also discriminating the actual fault plane. We found that two distinct rupture patches associated with different fracture propagation directions and possibly occurring on distinct rupture planes, characterized the source kinematics of the April 6 events. An initial updip propagation successively proceeds toward SE, possibly on a different plane. We also show that the same processing, applied to the April 7, 2009 aftershock (MW = 5.6), allows us to obtain useful information also in the case of lower magnitude events. Smaller events with similar location and source mechanism as the mainshock, to be used as Green’s empirical function, occur in the days before or within tens of minutes to a few hours after the mainshock. These quick, preliminary analyses can provide useful constraints for more refined studies, such as inversion of data for imaging the rupture evolution and the slip distribution on the fault plane. We suggest implementing these analyses for real, automatic or semi-automatic, investigations.
    Description: Published
    Description: 389-406
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: L'Aquila 2009 earthquake ; directivity ; seismic source ; seismogram analysis ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...