ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOPHYSICS  (2)
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology  (1)
  • Canary Islands  (1)
  • Subcritical rock failure  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Geologische Rundschau 86 (1997), S. 439-445 
    ISSN: 0016-7835
    Keywords: Key words Volcanic hazards ; Eruption forecasts ; Subcritical rock failure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  As the regions around active volcanoes succumb to large increases in population, particularly in the developing world where most of the high-risk volcanoes are located, the threat posed by eruptions becomes increasingly serious. Improvements in eruption forecasting are critical to combat this situation, for reducing injury and loss of life, and for minimizing the detrimental effects to local economies and to the fabric of society. Better-constrained forecasts are strongly dependent on geophysical and other data gathered during a program of volcano surveillance, and we reveal how, if interpreted in terms of static rock fracturing, analysis of changes in volcanic seismicity and ground deformation may be used to forecast more accurately the onset of eruptive activity. As illustrated by recent events at several volcanoes, studies of previous activity, increased levels of monitoring, and improved training of scientists are also all crucial to improving forecasts of impending eruptions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Lava flows can be considered as hot viscous cores within thinner, solidified crusts. Interaction between crust and core determines a flow's morphological and dynamical evolution. When the lava core dominates, flow advance approaches a steady state. When crusts are the limiting factor, advance is more irregular. These two conditions can be distinguished by a timescale ratio comparing rates of core deformation and crustal formation. Aa and budding pahoehoe lavas are used as examples of core- and crustal-dominated flows, respectively. A simple model describes the transition between pahoehoe and aa flow in terms of lava discharge rate, underlying slope, and either the thickness or velocity of the flow front. The model shows that aa morphologies are characterized by higher discharge rates and frontal velocities and yields good quantitative agreement with empirical relations distinguishing pahoehoe and aa emplacement on Hawaii.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M; p 799
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: The morphology of a lava flow is strongly influenced by its rheological structure. The rheological structure is, in turn, dependent on numerous factors including: (1) bulk composition, (2) crystallingity, (3) vesicularity, and (4) crustal development. Identifying which of the latter factors are most significant, and hence most readily investigated by remote-sensing techniques, is necessary to clarify short-term objectives and expectations from the study of Martian lava flows. Insights into the rheological controls on flow morphology are provided by variations in thickness of undrained lava streams on Etna and Vesuvius, Southern Italy. Both pahoehoe and aa lavas were studied.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., NASA MEVTV Program Working Group Meeting: Volcanism on Mars; p 9-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-18
    Description: Volcanic crises are complex and especially challenging to manage. Volcanic unrest is characterised by uncertainty about whether an eruption will or will not take place, as well as its possible location, size and evolution. Planning is further complicated by the range of potential hazards and the variety of disciplines involved in forecasting and responding to volcanic emergencies. Effective management is favoured at frequently active volcanoes, owing to the experience gained through the repeated ‘testing’ of systems of communication. Even when plans have not been officially put in place, the groups involved tend to have an understanding of their roles and responsibilities and those of others. Such experience is rarely available at volcanoes that have been quiescent for several generations. Emergency responses are less effective, not only because of uncertainties about the volcanic system itself, but also because scientists, crisis directors, managers and the public are inexperienced in volcanic unrest. In such situations, tensions and misunderstandings result in poor communication and have the potential to affect decision making and delay vital operations. Here we compare experiences on communi- cating information during crises on volcanoes reawakening after long repose (El Hierro in the Canary Islands) and in frequent eruption (Etna and Stromboli in Sicily). The results provide a basis for enhancing commu- nication protocols during volcanic emergencies.
    Description: Published
    Description: 1-17
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: N/A or not JCR
    Keywords: Etna volcano ; Stromboli volcano ; Canary Islands ; volcanic emergencies ; communication ; volcanic crisis ; Procedures for Communications During Volcanic Emergencies ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-05-29
    Description: Deep drilling is a key tool for the investigation of active volcanoes in the modern Earth Sciences, as this provides the only means to obtain direct information on processes that occur at depth. Data acquired from drilling projects are fundamental to our understanding of volcano dynamics, and for mitigation of the hazards they pose for millions of people who live close to active volcanoes. We present here the first borehole measurement of the stress field in the crust of Campi Flegrei (southern Italy), a large active caldera, and one of the highest risk volcanoes worldwide. Measurements were performed to depths of ∼500m during a pilot study for the Campi Flegrei Deep Drilling Project. These data indicate an extensional stress field, with a minimum horizontal stress of ca. 75% to 80% of the maximum horizontal stress, which is approximately equal to the vertical stress. The deviation from lithostatic conditions is consistent with a progressive increase in applied horizontal stress during episodes of unrest, since at least 1969. As the stress field is evolving with time, the outcome of renewed unrest cannot be assessed by analogy with previous episodes. Interpretations of future unrest must therefore accommodate the possibility that Campi Flegrei is approaching conditions that are more favourable to a volcanic eruption than has previously been the case. Such long-term accumulation of stress is not expected to be unique to Campi Flegrei, and so might provide a basis for improved forecasts of eruptions at large calderas elsewhere.
    Description: Published
    Description: 23-29
    Description: 6T. Sismicità indotta e caratterizzazione sismica dei sistemi naturali
    Description: 4V. Vulcani e ambiente
    Description: 5A. Energia e georisorse
    Description: 7A. Geofisica di esplorazione
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei ; stress ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...