ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy  (10)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics  (2)
  • 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous  (2)
  • 1
    Publication Date: 2020-12-15
    Description: The eruptive events of the July–August 2001 and October 2002–January 2003 at Mt. Etna provide new insights for reconstructing the complex geometry of the feeding system and their relationship to regional tectonics. The 2001 eruption took place mainly on the upper southern sector of the volcano. The eruption was preceded by a large earthquake swarm for a few days before its onset and accompanied by ground deformation and fracturing. The development of surface cracking along with the seismic pattern has allowed us to recognize three distinct eruptive systems (the SW–NE, NNW–SSE and N–S systems) which have been simultaneously active. Such eruptive systems are only the upper portions of a complex feeding system that was fed at the same time by two distinct magmas. The SW–NE and NNW–SSE systems, connected with the SE crater conduit, were fed by magma coming from depth, whereas the N–S system served instead as an ascending pathway for an amphibole-bearing magma residing in a shallow reservoir. The eruptive activity started again on October 2002 on the NE Rift Zone, where about 20 eruptive vents were aligned between 2500 and 1900 m a.s.l., and on the southern flank, from the central crater to the Montagnola. The onset of eruptive activity was accompanied by a seismic swarm. As in the 2001 eruptive event, two independent feeding systems formed, characterized by distinct magmas. The SW–NE system controlled the feeding of the Northeast Rift and was accommodated by left-lateral displacement along the WNW–ESE trending Pernicana Fault. The N–S system fed the eruptions on the southern flank. Moreover, the associated crustal deformation triggered seismic reactivation of tectonic structures in the eastern flank of the volcano and offshore. These two last eruptions indicate that at Mt. Etna the ascent of magma, as well as the accommodation of deformation, is strongly dominated by local extensional structures that are connected to a regional tectonic regime.
    Description: Published
    Description: 211-233
    Description: partially_open
    Keywords: extensional tectonics ; volcanic activity ; seismicity ; Sicily ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 5898384 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-14
    Description: From 25 November to 2 December 2006, the first active seismic tomography experiment at Stromboli volcano was carried out with the cooperation of four Italian research institutions. Researchers on board the R/V Urania of the Italian National Council of Research (CNR), which was equipped with a battery of four 210- cubic- inch generated injection air guns (GI guns), fired more than 1500 offshore shots along profiles and rings around the volcano.
    Description: DPC/INGV agreement 2004-2006
    Description: Published
    Description: 269-270
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: N/A or not JCR
    Description: reserved
    Keywords: Stromboli ; seismic tomography ; air-gun ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The continuous volcanic and seismic activity at Mount Etna makes this volcano an important laboratory for seismological and geophysical studies. We used repeated three-dimensional tomography to detect variations in elastic parameters during different volcanic cycles, before and during the October 2002–January 2003 flank eruption. Well-defined anomalous low P- to S-wave velocity ratio volumes were revealed. Absent during the pre-eruptive period, the anomalies trace the intrusion of volatile-rich (Q4 weight percent) basaltic magma, most of which rose up only a few months before the onset of eruption. The observed time changes of velocity anomalies suggest that four-dimensional tomography provides a basis for more efficient volcano monitoring and shortand midterm eruption forecasting of explosive activity.
    Description: Published
    Description: 821-823
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 727523 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We analysed the seismic activity preceding and accompanying the onset of the 2008 Mt. Etna eruption. Since January 2008, a clear seismic evidence of a magmatic unrest of the volcano was observed. Seismicity was firstly located in the southwestern sector of the volcano, at depth ranging between 10 and 20 km, along two tectonic structures (NE-SW and NNW-SSE) usually associated with deeper magmatic recharge mechanisms (Figs. 1, 2). Afterwards, the seismicity was located along the shallower portions of the main structures of the northeastern and southern flanks of the volcano (Figs. 1, 2). On May 13, 2008 an intense seismic swarm (about 230 events in 7 hours) announced the beginning of the eruption (Fig. 1, white circles). In order to provide seismological constraints to the magmatic unrest of the volcano, 336 earthquakes recorded from January 2007 to May 2008 (magnitude greater than 1.0) were selected for stress and strain tensors computation and 3D velocity and attenuation structure determination. This in order to individuate possible stress variations caused by the activation of magmatic sources which can be well evidenced by 3D tomographic images.
    Description: Published
    Description: Rome
    Description: 3.1. Fisica dei terremoti
    Description: open
    Keywords: Mt. Etna ; Tomography ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We performed a preliminary double-difference tomographic study using earthquake data recorded by the INGV-Catania seismic network during the large seismic and eruptive crisis of 2002-2003 at Mt Etna volcano. Compared to previous models, first results presented from the inversion of travel-time differences, tend to show an increase in the velocity contrast between the fast core and the slow periphery of the volcano.
    Description: Published
    Description: 74-84
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; double-difference tomography ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: During 2001 and 2002-2003 Mount Etna produced two significant flank eruptions. Many similarities between the two eruptions have been recognized by several authors regarding the high degree of explosivity, the location of the eruptive centres and the emission of different compositionally distinct magma types. A new tomographic study concerning the 2001-2003 interval time including the two lateral eruptions is here presented, which take into account precise earthquake locations. The used algorithm was the double-difference seismic tomography method (TomoDD), which uses both absolute and differential arrival times to simultaneously determine event locations and Vp and Vp/Vs velocity models. Firstly, we performed a tomographic inversion on the whole dataset consisting of 1,035 local earthquakes occurred from July 2001 to January 2003, combining 14,205 P-wave and 3,337 S-wave arrival time differences. After, we separately analysed the 2001, 2002-2003 and intra eruptive datasets to obtain the tomographic images in the three distinct periods. The tomographic inversion during the eruptive periods revealed the presence of anomalous volumes with very low Vp/Vs (values as small as 1.64) located in the same place of the 2001 and the 2002-2003 dike intrusions also evidenced by attenuation tomographies and modeled by geodetic data. We suggest that these anomalies trace the intrusion of volatile-rich magma leading to these peculiar explosive eruptions. In the tomograms related to the intra-eruptive period some variations in the elastic parameters have also been observed. The analysis of the geodetic and seismic deformation pattern in the intra eruptive period suggested that during 2001 –2003 period the active deformation at Mt Etna has been continuous, excluding a brief period of deflation following the 2001 eruption. In fact, after this period, the seismicity rate remained high, the geodetic data showed a renewal of the areal dilatation, suggesting a new magma upraising from depth causing an overpressure in the shallow reservoir which triggered the 2002-2003 eruption.
    Description: Published
    Description: Reykjavik
    Description: open
    Keywords: Mt. Etna ; tomography ; stress and strain seismic ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The present study is mainly focused to determine the hypocentral locations and the velocity structure between the northeastern Sicily and southern Calabria, including the Aeolian Archipelago with particular regard to Stromboli volcano. The main goals are: i) to explore the differences between relative and absolute earthquake locations, ii) to identify spatial clusters in the seismicity, in order to investigate on the most active seismogenic zones and structures and iii) to recognize the presence of low velocity regions beneath the Aeolian Archipelago related to the presence of partial melting. We applied the TomoDD algorithm which use both absolute and differential arrival times to simultaneously determine event locations and Vp and Vp/Vs velocity models. 1,304 well located events have been considered during the 1994-2006 period. This code was applied to the catalog phase data, combining 11,261 P-wave and 5,751 S-wave arrival time differences. On the basis of the distribution of the events, a denser grid with respect to previous studies was used. This allowed a higher resolution of the velocity model and to find a better correspondence with the most active seismogenic zones and structures. Moreover, being the velocity structure of Stromboli poorly defined, a particular attention was devoted to this area. Tomographic images beneath this volcano revealed the presence of a low Vp and Vs (average values around 5.4 and 3.1 Km/s, respectively) elongated volume in the crust, suggesting the existence of partial melting. This volume extending until 17 km of depth, overlies a high Vp and Vs (values greater than 7.5 and 4.5 km /s, respectively) region that can be related to the Moho.
    Description: Published
    Description: Reykjavik
    Description: open
    Keywords: Tomography ; Stromboli ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Double-difference tomography at Mt Etna volcano was realized by using the tomographic algorithm developped by Monteiller et al. (2005), in which the travel-time computation was performed using a finite-difference solution of the Eikonal equation (Podvin and Lecomte, 1991) and a posteriori ray-tracing. The inverse problem was solved using a probabilistic approach (Tarantola and Valette, 1982). The optimal a priori information (correlation length and a priori model variance) was found experimentally by performing tomographies for correlation lengths and variances varying in large intervals. This probabilistic approach allowed us to use a sech pdf for representing errors in differential times. Data were travel-times and time delays provided by a set of 329 earthquakes, well-recorded by the INGV-CT seismic network (50 stations) on the Mt Etna volcano during the seismo-volcanic crisis occurring between October 2002 and January 2003. Checkerboard tests realized with this geometry and earthquake pairs showed that the model can be correctly reconstructed in a significant area around Mt Etna volcano. Results of the P and S-wave double-difference tomography clearly evidenced two concentric features: a fast central cylindrical core, probably of intrusive origin, surrounded by a slow annealed body, which could be related to partial melting.
    Description: Published
    Description: Vienna
    Description: open
    Keywords: Mt. Etna ; double-difference tomography ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Since January 2008, several geophysical parameters have evidenced a recharging phase at Mt. Etna volcano culminating with an effusive eruption that began on May 13, 2008. Seismic activity recorded at Mt. Etna from January 2007 to May 2008 was analyzed in order to provide seismological constraints to the volcano dynamics leading to the eruption. A total of 336 selected earthquakes, withML≥1.5, were used as data source for this study. Specifically, we calculated 3D velocity and attenuation tomography, including a 3D relocation of the events, and we computed 53 selected fault plane solutions (FPSs) that were used for stress tensor inversion. The most important result obtained from the joint analysis of VP, VP/VS and P-wave attenuation is an anomalous zone with normal to high VP (values between 3.5 and 4.5 km/s) and low VP/VS (values≤1.64), which partially overlaps with a low QP (values≤50) volume located along a NS trending channel beneath the central crater. This can be interpreted as a shallow volume characterized by high temperature where the magma is located with the presence of supercritical fluids. The analysis of seismic stress tensor evidenced an extensional regime in the depth range 3–13 km with a vertically oriented σ1. This finding may suggest an extensional stress regime, probably related to the kinematic response of the volcanic edifice to both a deep magmatic intrusion and a condition of decreased regional compressive stress facilitated by sliding processes of the eastern flank of the volcano.
    Description: Published
    Description: 50–63
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna ; Volcanic eruptions ; Stress Tensor ; Velocity tomography ; Attenuation tomography ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The Pernicana–Provenzana Fault System is one of the most active tectonic systems of Mt. Etna and it plays an important role in the dynamic of the eastern flank of the volcano. Earthquakes occurring close to this structural trend have reached magnitudes up to 4.2, sometimes with coseismic surface faulting, and have caused severe damages to tourist resorts and villages in the vicinity of this structure. In the last decade, a large number of shocks, sometimes in the form of swarms, linked to Pernicana–Provenzana Fault System movements have been detected by the permanent local seismic network operating in eastern Sicily. In this paper, we report on the detailed study of the seismic activity occurring during the 2000–2009 time span in the Pernicana–Provenzana Fault System area. Firstly, we located 407 earthquakes using a standard location code and a 1D crustal velocity model. We then applied two different approaches to calculate precise hypocenter locations of the events. In particular, a non-linear code was adopted to obtain an estimate of the a posteriori Probability Density Function in 3D space for the hypocenter location. Moreover, a relative location of correlated event pairs was performed, using the double-difference method. These two different location approaches allowed defining with good accuracy, the most active and hazarding sectors of the structure. The results of these precise locations showed a tighter clustering in the epicenters and in focal depths, in comparison with standard locations. Earthquakes are located along the Pernicana–Provenzana Fault System, and are mainly clustered in two zones, separated by an area with very low rate of earthquakes occurrence, but characterized by the highest energy release. Depths of the foci are very shallow, ranging between the surface and about 3 km b.s.l. Kinematics of the Pernicana–Provenzana Fault System, revealed by the fault plane solutions computed for the most energetic earthquakes, highlights a predominant dip–slip and left strike movements along E–W oriented fault planes, in agreement with field observations.
    Description: Published
    Description: 16-26
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Etna volcano ; Pernicana–Provenzana Fault System ; Earthquakes ; Precise location ; Fault plane solutions ; Seismic strain release ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...