ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Vengono presentate nuove relazioni empiriche, definite per il territorio italiano, per la stima dell’intensità in un dato sito a partire da informazioni epicentrali o relative a località vicine. Queste relazioni, espresse in forma probabilistica e quindi direttamente utilizzabili per la stima della pericolosità sismica, condividono la stessa formalizzazione e la medesima base informativa. In particolare, sono state seguite tre diverse strategie: le prime due hanno portato alla definizione di una relazione di attenuazione per la stima dell’intensità al sito da dati epicentrali utilizzando una forma parametrica rispettivamente Gaussiana e Binomiale; la terza analisi è stata invece mirata a definire le modalità di “correzione” del valore locale di intensità, dedotto dalle informazioni epicentrali, con dati di risentimenti osservati in località vicine al sito in esame.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: 5.1. TTC - Banche dati e metodi macrosismici
    Description: open
    Keywords: attenuation relations ; macroseismic intensity ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Abstract We critically analyze the results on seismic intensity attenuation in Italy derived by Albarello and D’Amico (2004) and Gasperini (2001).We demonstrate that, due to the inadequacy of certain underlying assumptions, the empirical relationships determined in those studies did not best reproduce the decay of intensity as the distance from the source increases. We reconsidered some of the relevant concepts and assumptions used in these intensity-attenuation studies (macroseismic epicenter, epicentral intensity, data completeness) to suggest some useful recipes for obtaining unbiased estimates. In particular, we suggest that (1) data for distances from the source at which an intensity below the limit of diffuse perceptibility (≤IV) is expected should be excluded from attenuation computations because such data are clearly incomplete, (2) attenuation equations that include a term proportional to the epicentral intensity I0 with a coefficient different from 1.0 must not be used because they imply a variable offset between I0 and the intensity expected at the epicenter, and (3) epicentral intensities must be recomputed consistently with the attenuation equation because those reported by the Italian catalog do not generally correspond with the intensity predicted at the epicenter by the attenuation relationships so far proposed. Following these suggestions produces a significant reduction in the standard deviation of the model that might lead to a corresponding reduction of the estimates of seismic hazard.
    Description: Published
    Description: 682-691
    Description: JCR Journal
    Description: reserved
    Keywords: Macroseismic intensity, Ground motion equation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-24
    Description: The interpretation of sea level variations along the coasts of the Mediterranean region must be accompanied by the evaluation of vertical land movements associated with seismic and volcanic sources. This can be tentatively carried out through seismic strain analysis based on data pertaining the last 2 millennia as well as from the study of maritime archaeological structures.
    Description: Published
    Description: Hersonissos, Crete island, Greece
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: Sea level, geophysics, modelling ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-24
    Description: The Mediterranean basin is a natural laboratory for the reconstruction of the sea level variations since paleo-historical times. During the Holocene, sea level variations in this region have been mainly determined by the response of the geoid and of the solid Earth to the melting of remote ice aggregates, which has produced spatially variable signals mostly governed by the effect of ocean loading. An analysis of past and recent sea level variations is possible from various indicators, which provide data on relative sea level and crustal vertical movements on different time scales.
    Description: Published
    Description: Burlington house, London
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: Sea level, archaeology, geology, geophysics, modelling, climate change ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Abstract Several different attenuation models have recently been proposed for the Italian region to characterize the decay of macroseismic intensity with the distance from the source. The significant scatter between these relationships and some significant drawbacks that seem to characterize previous approaches (described in a companion article by Pasolini et al., 2008) suggest that the problem needs to be reconsidered. As a first step toward more detailed analyses in the future, this study aimed at developing an isotropic attenuation relationship for the Italian area. Because this attenuation relationship has to be used primarily in probabilistic seismic hazard assessment, major attention was given to evaluating the attenuation relationship in its complete probabilistic form. Another important aspect of this study was the preliminary evaluation of the intrinsic (i.e., independent of the specific attenuation relationship to be used) scattering of data, which represents the lowest threshold for the residual variance that cannot be explained by the attenuation relationship. Furthermore, the peculiar formal features of intensity data and relevant uncertainties were considered carefully. To reduce possible biases, the completeness of the available database was checked and a suitable data selection procedure was applied. Since epicentral intensity cannot be defined unambiguously from the experimental point of view, the attenuation relationship was scaled with a new variable that is more representative of the earthquake dimension. Several criteria were considered when evaluating competing attenuation formulas (explained variance, Bayesian information criteria, Akaike information criteria, etc.). Statistical uncertainty about empirical parameters was evaluated by using standard approaches and bootstrap simulations. The performance of the selected relationship with respect to a control sample was analyzed by using a distribution-free approach. The resulting equation for the expected intensity I at a site located at epicentral distance R is I IE 0:0086 0:0005 D h 1:037 0:027 ln D ln h ; where D R2 p h2, h 3:91 0:27 km, and IE is the average expected intensity at the epicenter for a given earthquake that can be computed from the intensity data (when available) or by using empirical relationships with the moment magnitude Mw or the epicentral intensity I0 reported by the Italian seismic catalog IE 5:862 0:301 2:460 0:055 Mw; IE 0:893 0:254 1:118 0:033 I0: Comparison of the model standard deviation (S.D.) (0.69 intensity degrees) with the intrinsic one (0.62) indicates that this attenuation equation is not far from being optimal.
    Description: Published
    Description: 692-708
    Description: JCR Journal
    Description: reserved
    Keywords: Macroseismic intensity, Ground motion prediction equation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...