ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring  (2)
  • Southern Italy  (2)
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (1)
  • 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis  (1)
  • Finite Difference  (1)
  • 1
    facet.materialart.
    Unknown
    SEISMOLOGICAL SOC AMER
    Publication Date: 2017-04-04
    Description: A local magnitude scale has been defined for southern Italy, in the area monitored by the recently installed Irpinia Seismic Network.Waveforms recorded from more than 100 events of small magnitude are processed to extract synthetic Wood– Anderson traces. Assuming a general description of peak-displacement scaling with the distance, by means of linear and logarithmic contributions, a global exploration of the parameter space is performed by a grid-search method with the aim of investigating the correlation between the two decay contributions and seeking for a physical solution of the problem. Assuming an L2 norm, we found M log A 1:79 log R 0:58; yielding an error on the single estimation smaller than 0.2, at least when the hypocenter location is accurate. Station corrections are investigated through the station residuals, referring to the average value of the magnitude. Using a z test, we found that some stations exhibit a correction term significantly different from 0. The use of the peak acceleration and peak velocity as indicators of the magnitude is also investigated.
    Description: Published
    Description: 2461–2470
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: Local Magnitude ; Southern Italy ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We investigate the effect of extended faulting processes and heterogeneous wave propagation on the early warning system capability to predict the peak ground velocity (PGV) from moderate to large earthquakes occurring in the southern Apennines (Italy). Simulated time histories at the early warning network have been used to retrieve early estimates of source parameters and to predict the PGV, following an evolutionary, probabilistic approach. The system performance is measured through the Effective Lead-Time (ELT), i.e., the time interval between the arrival of the first S-wave and the time at which the probability to observe the true PGV value within one standard deviation becomes stationary, and the Probability of Prediction Error (PPE), which provides a measure of PGV prediction error. The regional maps of ELT and PPE show a significant variability around the fault up to large distances, thus indicating that the system's capability to accurately predict the observed peak ground motion strongly depends on distance and azimuth from the fault.
    Description: Published
    Description: L00B07
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic early warning ; Southern Italy ; Synthetic seismograph ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Publication Date: 2017-04-04
    Description: It has been previously demonstrated that no reflection is generated when elastic (or electromagnetic) waves enter a region with Perfectly Matching Layer (PML) absorbing conditions in a continuous medium. The practical application of PMLs, however, is in numerical modeling, where the medium is discretized by either a finite-element or a finite-difference scheme thus introducing a reduced amount of reflection. In such a case what is the practical and quantitative efficiency of PML absorbing boundaries? Assuming a regular spatial mesh, we start by evaluating analytically the reflection of body waves introduced by the discrete transition toward PML properties, under variable angle of incidence and wavelength. We then extend our evaluation with numerical tests for both body and Rayleigh waves. Surprisingly enough, the absorption remains equally efficient at wavelengths far larger than the PML thickness itself. As a consequence, the PML thickness can be kept minimal even for studies involving relatively low frequencies, and no rescaling with model size is required. Another pleasant feature is that it is all the more efficient at shallow angles of incidence. Finally, we show through numerical examples that a major advantage of using PMLs is their efficiency in absorbing Rayleigh waves at the free surface, a point where more classical methods perform rather poorly. Although previous authors essentially limited the description of their discrete implementation to 2D, we develop to some level of detail a 3D finite-difference scheme for PMLs and provide numerical examples.
    Description: Published
    Description: 891-903
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: Modeling ; Finite Difference ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: XXXXX
    Description: Published
    Description: 185-210
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: restricted
    Keywords: Magnitudo locale ; Magnitudo momento ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Seismological Society of America
    Publication Date: 2017-04-04
    Description: We studied the ambient noise recorded at Irpinia Seismic Network (ISNet), a seismic network installed along the Campania–Lucania Apenninic chain (southern Italy), with the aim of characterizing the noise spectrum for each station as a function of time and the detection threshold of the network. For the latter purpose, we proposed a mixed indirect approach based on the signal-to-noise ratio (SNR) in the time domain, with parameterization in the frequency domain. The source signature is represented by the convolution of the Brune source time function with the Azimi attenuation curve. We found that 1.3 is the minimum magnitude an event should have to be detected at least at five stations with an SNR larger than five, wherever it occurs. We observed a space variability of the detection threshold as large as 0.3 units, ascribed to both the geometrical configuration of the network and the differences in the noise levels at the different stations. A sensitivity study indicates that the estima- tion of the detection threshold is robust for changes in the focal depths and stress drop, while it is strongly affected by the anelastic attenuation. In our case, changes of the reduced time t␣ in the range 0.015–0.035 s generate changes in the completeness threshold of 0.5 units. Noise levels were obtained by a statistical analysis on the power spectral density curves along almost three years of continuous data from 22 stations. We found that, at short periods, major time variations are generated by diurnal changes in the wind intensity and other meteorological factors. At longer periods, we retrieved the micro- seismic peak, resulting from the constructive interference of oceanic waves. We also found an additional peak between 2 and 4 s, correlated with the sea wave height along the Tyrrhenian coast.
    Description: Published
    Description: 574–586
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: seismic noise, seismic network, detection threshold, local events, power spectral density, seismic source ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...