ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: In the framework of a gradual global warming, which is one of the topic of major interest in the recent years and which importance is resumed in the Intergovernmental Panel on Climate Change (IPCC), it is important the study of the variability of the Earth’s system at the high latitudes i.e., in Artic and Antarctic areas, because these are the regions more sensitive to climatic changes. The possibility to study marine sedimentary sequences from Antarctica thus represented an important opportunity to investigate such climatic variability. Cold water mass formation in the Southern Ocean is involved in the global thermohaline circulation (THC) through the convection and inter-ocean exchanges of surface, intermediate and bottom waters. This work focus on the study of marine sequences cores from mid-high latitudes from strategic locations far and near the continental margin of Antarctica: (1) ANTA 95-157 (62°05.95'S) and ANTA 96-16 (66°20.09'S) cores are a long transect from New Zealand and Ross Sea slightly south of the present day Polar Front and the Pacific Antarctic Ridge, respectively; (2) MD97-2114 (42°22.32'S) core is on the northern side of Chatham Rise, east of New Zealand; (3) ODP Site 1166 (67°41.77'S) and 1167 (66°24.01'S) are in Prydz Bay continental shelf and slope, respectively. It has been provided a detailed magnetostratigraphy of the sequences and have been investigated magnetic proxies, which reflect variations in mineralogy, grain-size, and concentration of the magnetic fraction. Environmental magnetic data, along with the chronology derived by the magnetostratigraphy, provided an important contribution to our understanding of environmental and climate changes during the time intervals here examined. The cores ANTA and MD97-2114 span the shift from predominant 41-ka to predominant 100-ka glaciation cycles at around 1.0–0.9 Ma, (the Mid-Pleistocene Climate Transition (MPT)) that was centered at 922±12 ka and lasted about 40±9 ka. The amplitude of the 100-ka cycle abruptly increased much later on, at 641±9 ka. The transition was accompanied by an increase in 18O and decrease in 13C but the causes may be many and further information about changes in global ice volume during this period needed. In this core it has been found evidence of orbital influence on sedimentary processes. The core MD97-2114 records long-term variation of the upper Circumpolar Deep Water component of the Deep Western Boundary Current and manifests a stepwise modification of the THC during the transition. ODP Site 1166 and 1167 provide a record of the process involved in the story of the glacial expansion and retreat of the ice at the margin of the continent in Prydz Bay during the Plio-Pleistocene. Preliminary results from SEDANO cores shows downcore variations in concentration, mineralogy, and grain-size of magnetic minerals. In particular, there is a relative increase of moderate coercivity respect to low-coercivity minerals (magnetite) during glacials and a millennial scale variability of the magnetic grain size characterizes the last glacial (core SED 12 and 13) and it may be related to changes in the bottom current velocity.
    Description: INGV
    Description: Unpublished
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: reserved
    Keywords: paleomagnetism ; Antarctica ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We present a collection of pictures of the coseismic secondary geological effects produced on the environment by the 2012 Emilia seismic sequence in northern Italy. The May-June 2012 sequence struck a broad area located in the Po Plain region, causing 26 deaths and hundreds of injured, 15.000 homeless, severe damage of historical centres and industrial areas, and an estimated economic toll of ~2 billion of euros. The sequence included two mainshocks (Figure 1): the first one, with ML 5.9, occurred on May 20 between Finale Emilia, S. Felice sul Panaro and S. Martino Spino; the second one, with ML 5.8, occurred 12 km southwest of the previous mainshock on May 29. Both the mainshocks occurred on about E-W trending, S dipping blind thrust faults; the whole aftershocks area extends in an E-W direction for more than 50 km and includes five ML≥5.0 events and more than 1800 ML〉1.5 events. Ground cracks and liquefactions were certainly the most relevant coseismic geological effects observed during the Emilia sequence. In particular, extensive liquefaction was observed over an area of ~1200 km2 following the May 20 and May 29 events. We collected all the coseismic geological evidence through field survey, helicopter and powered hang-glider trike survey, and reports from local people directly checked in the field. On the basis of their morphologic and structural characteristics the 1362 effects surveyed were grouped into three main categories: a) liquefactions related to overpressure of aquifers, occurring through several aligned vents forming coalescent flat cones (485 effects); b) liquefactions with huge amounts of liquefied sand and fine sand ejected from fractures tens of meters long (768); c) extensional fractures with small vertical throws, apparently organized in an en-echelon pattern, with no effects of liquefaction (109). The photographic dataset consists of 99 pictures of coseismic geological effects observed in 17 localities concentrated in the epicentral area. The pictures are sorted and presented by locality of observation; each photo reports several information such as the name of the site, the geographical coordinates and the type of effect observed. Figure 1 shows a map of the pictures sites along with the location of the two mainshocks; Figure 2 shows a detail of the distribution of the liquefactions in the area of S. Carlo. The complete description of the coseismic geological effects induced by the Emilia sequence, their relation with the aftershock area, the InSAR deformation area and the I〉6 EMS felt area, along with the description of the technologies used for data sourcing and processing are shown in Emergeo Working Group [2012a and 2012b].
    Description: Published
    Description: 1-70
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: open
    Keywords: liquefaction features ; 2012 Emilia seismic sequence ; survey report ; EMERGEO ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...