ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-14
    Description: A quantitative analysis of planktonic foraminifera, coupled with petrophysical and paleomagnetic measurements and 14C AMS calibrations, was carried out on a deep core recovered in the Sardinia Channel (Western Mediterranean Sea), during the CIESM Sub2 survey, providing an integrated stratigraphic time-framework over the last 80 kyr. Significant changes in the quantitative distribution of planktonic foraminifera allowed the identification of several eco-bioevents useful to accurately mark the boundaries of the eco-biozones widely recognised in the Western Mediterranean records and used for large scale correlations. Namely, 10 eco-biozones were identified based on the relative abundance of selected climate sensitive planktonic foraminiferal species. Sixteen codified eco-bioevents were correlated with the Alboran Sea planktonic foraminiferal data and four climatic global events (Sapropel S1, Younger Dryas, Greenland Isotope Interstadial 1, Greenland Isotope Stadial 2, Heinrich event H1-H6) were recognized. The eco-bioevents together with the 14C AMS calibrations allowed us to define an accurate age model, spanning between 2 and 83 kyr. The reliability of the age model was confirmed by comparing the colour reflectance (550 nm%) data of the studied record with the astronomically tuned record from the Ionian sea (ODP-Site 964). A mean sedimentation rate of about 7 cm/kyr included three turbidite event beds that were chronologically constrained within the relative low stand and lowering sea level phases of the MIS 4 and 3. The deep-sea sedimentary record includes a distinct tephra occurring at the base of the core which dates 78 ka cal. BP. The paleomagnetic data provide a well-defined record of the characteristic remanent magnetization that may be used to reconstruct the geomagnetic paleosecular variation for the Mediterranean back to 83 kyr.
    Description: Published
    Description: 725 - 737
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Integrated stratigraphy ; Late Neogene marine record ; Eco-bio-events ; Reflectance 550 nm % ; Sardinia Channel ; Western Mediterranean ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-14
    Description: A high-resolution integrated stratigraphy is presented for the Late Quaternary in the southern-eastern Tyrrhenian Sea. It is based on calcareous plankton taxa (planktonic foraminifera and nannoplankton) distribution, d18OGlobigerinoides ruber record, tephrostratigraphy and radiometric dating methods (210Pb and 137Cs, AMS 14C) for a composite sediment core (from the top to the bottom, C90-1m, C90 and C836) from the continental shelf of the Salerno Gulf. High sedimentation rates from ca 1 cm/100 y for the early Holocene, to 3.45 cm/100 y for the middle Holocene to 8.78 cm/100 y from late Holocene and to 20 cm/100 y for the last 600 AD, make this area an ideal marine archive of secular paleoclimate changes. Quantitative distributional trend in planktonic foraminifera identify seven known (1Fe7F) eco-biozones, and several auxiliary bioevents of high potential for Mediterranean biostratigraphic correlation. Recognised were: the acme distribution of Neogloboquadrina pachyderma r.c. between 10.800 0.400 ka BP and 5.500 0.347 ka BP, a strong increase in abundance of Globorotalia truncatulinoides r.c. and l.c. at 5.500 0.347 ka BP and at 4.571 0.96 ka BP, respectively, an acme interval of Globigerinoides quadrilobatus (between 3.702 0.048 ka BP and 2.70 0.048 ka BP) and the acme/paracme intervals of T. quinqueloba (acme between 3.350 0.054 ka BP and 1.492 0.016 ka BP; paracme between 1.492 0.016 ka BP and 0.657 0.025 ka BP; acme beginning 0.657 0.025 ka BP). These results, integrated with trends of selected calcareous nannofossil species (Florisphaera profunda, Brarudosphaera bigelowii, Gephyrocapsa oceanica and Emiliania huxleyi) and d18OG. ruber signature, are consistent with the most important pre-Holocene and early Holocene paleoclimatic and paleoceanographic phases i.e., the BöllingeAllerod, the Younger Dryas and the time interval of Sapropel S1 deposition in the eastern Mediterranean Sea. These features revealed the high potential of this shallow water environment for high-resolution stratigraphy and correlation for the western Mediterranean. In addition, the chemical characterization of seven tephra layers supplied further data about the age and the dispersal area of some well-known Campi Flegrei explosive events, inferring the possible occurrence of explosive activity at Vesuvius around the middle of the 6th century, and contributing to refine the tephrostratigraphic framework for the last 15 ka in the south-eastern Tyrrhenian Sea.
    Description: Published
    Description: 71-85
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: calcareous plancton ; pollens ; dinoflagellates ; tephrostratigraphy ; stable isotopes ; Quaternary ; Mediterranean ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: A quantitative analysis of planktonic foraminifera, coupled with petrophysical and paleomagnetic measurements and 14C AMS calibrations, was carried out on a deep core recovered in the Sardinia Channel (Western Mediterranean Sea), during the CIESM Sub2 survey, providing an integrated stratigraphic time-framework over the last 80 kyr. Significant changes in the quantitative distribution of planktonic foraminifera allowed the identification of several eco-bioevents useful to accurately mark the boundaries of the eco-biozones widely recognised in the Western Mediterranean records and used for large scale correlations. Namely, 10 eco-biozones were identified based on the relative abundance of selected climate sensitive planktonic foraminiferal species. Sixteen codified eco-bioevents were correlated with the Alboran Sea planktonic foraminiferal data and four climatic global events (Sapropel S1, Younger Dryas, Greenland Isotope Interstadial 1, Greenland Isotope Stadial 2, Heinrich event H1-H6) were recognized. The eco-bioevents together with the 14C AMS calibrations concurred to define an accurate age model, spanning between 2 and 83 kyr cal. BP. The reliability of the age model was confirmed by comparing the colour reflectance (550 nm%) data of the studied record with the astronomically tuned one of the Ionian sea (ODP-Site 964). A mean sedimentation rate of about 7 cm/kyr was evaluated including three turbidite event beds that were chronologically constrained within the relative low stand and lowering sea level phases of the MIS 4 and MIS 3. The deep sea sedimentary record includes a distinct tephra occurring at the base of the core which dates 79 ka. The paleomagnetic data provide a well-defined record of the characteristic remanent magnetization that may be used to reconstruct the geomagnetic paleosecular variation for the Mediterranean back to 83 kyr cal. BP.
    Description: In press
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: open
    Keywords: integrated stratigraphy, late Neogene marine record, eco-bio-events, reflectance 550 nm %, Sardinia ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...