ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-12-16
    Description: We present a geomorphological analysis of the recent extensional tectonics of a Quaternary continental basin in the Northern Apennines (Italy). The study area is focused on Upper Tiber Valley (UTV), a basin elongated for 70 km in NNW-SSE direction hosting the Tiber River. The area is characterized by a series of features that make it an excellent case study: (i) homogeneity of lithology (ii) active faults, and (iii) strong morphogenetic activity. In this study, 36 hydrographical basins, tributaries of Tiber River, have been analysed. A preliminary qualitative geomorphological setting was outlined pointing out that the drainage river network shows meaningful evidence of tectonic control, such as abrupt changes in stream directions, knickpoints and steepness anomalies alignments along meaningful length in adjacent basins. Besides, the tectonic control is well marked in base level changes and consequent tectonically induced downcutting. Signs of neotectonics are highlighted by structural landforms too. The entrenchment of alluvial fans, the triangular facets and the fault planes are mapped by field survey and aerial photo interpretation. In addition, a quantitative analysis was also performed. Linear, areal and volumetric indexes related to drainage basins and river networks are taken into account. The geometry of the escarpments delimiting the basin and the landforms detected along the adjacent piedmont are investigated. The ranges of values, according to the existing literature, confirm a condition of wide-ranging morphological disturbance. In the central part of the study area, while the western basins are almost in equilibrium, the eastern ones reveal clear signs of disequilibrium, this is particularly evident along the distal segment of the river network. These data, joined with the characteristics of the escarpment and piedmont junction, confirm that the neotectonic activity, in the centre and in the eastern side of the basin, is the main factor controlling the morphological system.
    Description: Published
    Description: 129-138
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Geomorphometry ; Neotectonics ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-01
    Description: We present a reconstruction of the central Marche thrust system in the central-northern Adriatic domain aimed at constraining the geometry of the active faults deemed to be potential sources of moderate to large earthquakes in this region and at evaluating their long-term slip rates. This system of contractional structures is associated with fault-propagation folds outcropping along the coast or buried in the offshore that have been active at least since about 3Myr. The ongoing deformation of the coastal and offshore Marche thrust system is associated with moderate historical and instrumental seismicity and recorded in sedimentary and geomorphic features. In this study, we use subsurface data coming from both published and original sources. These comprise cross-sections, seismic lines, subsurface maps and borehole data to constrain geometrically coherent local 3D geological models, with particular focus on the Pliocene and Pleistocene units. Two sections crossing five main faults and correlative anticlines are extracted to calculate slip rates on the driving thrust faults. Our slip rate calculation procedure includes a) the assessment of the onset time which is based on the sedimentary and structural architecture, b) the decompaction of clastic units where necessary, and c) the restoration of the slip on the fault planes. The assessment of the differential compaction history of clastic rocks eliminates the effects of compaction-induced subsidence which determine unwanted overestimation of slip rates. To restore the displacement along the analyzed structures, we use two different methods on the basis of the deformation style: the fault parallel flow algorithm for faulted horizons and the trishear algorithm for fault-propagation folds. The time of fault onset ranges between 5.3-2.2 Myr; overall the average slip rates of the various thrusts are in the range of 0.26-1.35 mm/yr.
    Description: Published
    Description: 122-134
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: open
    Keywords: slip rate ; 3D geological model ; structural restoration ; seismogenic source ; thrust tectonics ; northern Apennines ; Adriatic Sea ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...