ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-24
    Description: The 2009 L’Aquila earthquake determined ground cracks in the area of San Gre- gorio, along a normal fault branch NW-SE trending and SW dipping. We dug two paleoseismological trenches across the fault to investigate its Late Quaternary ac- tivity and to verify whether the co-seismic ground ruptures could be effectively re- lated to the fault activation. The trenches showed that, in the past few millennia, the fault branch was responsible for surface displacement much larger than that determined by the 2009 earthquake. Moreover, geological/geomorphological field survey de-fined that the central portion of the structure is utilised in its shallowest portion as sliding plane of a large-scale gravitational mass movement. In particular, one of the paleoseismological trenches revealed that the large scale mass wasting is probably characterised by both continuous displacement and abrupt events of movement. Seismological investigations defined small amplification on rock site along the investigated fault, to be likely related to the joint and fracture condition deter-mined by the fault activity.
    Description: Published
    Description: Torino
    Description: 2T. Tettonica attiva
    Description: restricted
    Keywords: L’Aquila earthquake ; Large scale mass wasting ; Seismic microzonation ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-13
    Description: We measured ground displacements before and after the 2009 L’Aquila earthquake using multitemporal InSAR techniques to identify seismic precursor signals. We estimated the ground deformation and its temporal evolution by exploiting a large dataset of SAR imagery that spans seventy-two months before and sixteen months after the mainshock. These satellite data show that up to 15 mm of subsidence occurred beginning three years before the mainshock. This deformation occurred within two Quaternary basins that are located close to the epicentral area and are filled with sediments hosting multi-layer aquifers. After the earthquake, the same basins experienced up to 12 mm of uplift over approximately nine months. Before the earthquake, the rocks at depth dilated, and fractures opened. Consequently, fluids migrated into the dilated volume, thereby lowering the groundwater table in the carbonate hydrostructures and in the hydrologically connected multi-layer aquifers within the basins. This process caused the elastic consolidation of the fine-grained sediments within the basins, resulting in the detected subsidence. After the earthquake, the fractures closed, and the deep fluids were squeezed out. The pre-seismic ground displacements were then recovered because the groundwater table rose and natural recharge of the shallow multi-layer aquifers occurred, which caused the observed uplift.
    Description: Published
    Description: 12035
    Description: 6T. Variazioni delle caratteristiche crostali e precursori
    Description: JCR Journal
    Keywords: InSAR ; earthquake ; L'Aquila ; precursor ; hydrogeology ; consolidation ; 04.04. Geology ; 04.03. Geodesy ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...