ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Geodetical monitoring of the Campi Flegrei caldera (Naples, Italy), has been historically carried out by ground networks giving an information related only to a certain number of measuring points; this limitation can be greatly relieved by exploiting the space-borne DInSAR which allows to extract the geodetic information on wide areas, with a good time coverage in comparison with the mean repetition time of the campaign measurements. In this work we will show recent results on Campi Flegrei, obtained by using all the ENVISAT ASAR available data from both ascending and descending orbits. The processed data revealed that the uplift phase of Campi Flegrei, which became very clear in summer 2005 with an average velocity of about 2.8 mm/year, has definitely reduced the uplift velocity since spring 2007. This conclusion is consistent with independent deformation measurements carried out by the Vesuvius Observatory (INGV-OV). Differences, in terms of limits and potentialities of DInSAR with respect to classical geodetic techniques and vice-versa and the way they can be compared/integrated, is still a very interesting matter of debate suggesting, as an optimal solution for monitoring purposes in active volcanic areas, the integration of all the available techniques.
    Description: Unpublished
    Description: Frascati
    Description: 1.10. TTC - Telerilevamento
    Description: open
    Keywords: MONITORING THE CAMPI FLEGREI CALDERA ; EXPLOITING SAR ; GEODETICAL DATA ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: VELISAR (Ground VELocity in Italian Seismogenic Areas) is a scientific research initiative aimed at producing a map of the ground deformation over most of the seismogenic areas of Italy, using the space-based technique of multitemporal Synthetic Aperture Radar Interferometry (InSAR). The ground velocities derived from InSAR data will be validated by means of ground based data obtained from GPS, optical leveling, seismological and neotectonic studies. The scope of the project is to produce a high-resolution ground deformation dataset useful to model the seismic cycle of strain accumulation and release at the scale of the single faults. The main objective of VELISAR is to produce maps of ground velocity with the following characteristics: - A ground resolution better than 100 m. - Average uncertainty of LoS velocity measurements smaller than 2 mm/yr . - Temporal coverage of at least 7 years. - Retrieval of East and Up components from ascending and descending LoS. VELISAR will exploit the potential of the long time series (1992-2000) of ERS InSAR data maintained in the ESA archives; over 4000 ERS images will have to be processed to accomplish its objectives. Presently, two InSAR techniques for the measurement of slow ground deformation are used in VELISAR: the Permanent Scatterers (PS) technique developed by the Politecnico of Milano (POLIMI), and the Small Baseline Subset (SBAS) technique, developed by the Institute for Remote Sensing of Environment (IREA-CNR), in Napoli. The PS technique is applied by TRE preferably over areas characterised by diffuse temporal decorrelation due to, for instance, erodible lithologies, agricultural land use and strong vegetation cover. In these areas we expect to obtain good temporal coherence mainly on sparse point scatterers. The SBAS technique is applied by IREA and INGV mostly over areas where limited temporal decorrelation is expected: urban areas, scarcely vegetated areas. The ground resolution at which these data are originally processed is 80 m. An important goal of the VELISAR initiative is to disseminate the information on the InSAR-derived ground velocity measurements, to the scientific community and to the public in general. Such goal is accomplished through a dedicated web site, where the velocity maps of the italian seismogenic areas will be progressively published. We will present the initiative, its scope and objectives, the technical details and the data processing strategies, and some examples of ground velocity maps.
    Description: Published
    Description: Vienna, Austria
    Description: open
    Keywords: SAR ; Inteferometry ; Small Baseline Sunset ; SBAS ; Permanent Scatterers ; PS ; Ground Velocity ; seismogenic area ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Format: 3029267 bytes
    Format: image/png
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We have analyzed a multiparametric data set of seismological, geodetic and geochemical data recorded at Campi Flegrei caldera since 1982. We focus here on the period 1989–2010 that followed the last bradyseismic crisis of 1982–1984. Since then, there have been at least five repeated minor episodes of ground uplift accompanied by seismicity. We have reanalyzed old paper and digital seismic data sets dating back to 1982. The paper recordings show evidence of long‐period events in January 1982 and March 1989, and we have digitized some of these significant waveforms. Furthermore, the revision of digital seismograms dating back to 1994 shows a significant swarm of long‐period events in August 1994. Volcano‐tectonic and long‐period events hypocenters have been relocated in a three‐dimensional velocity model. Statistical analysis of volcano‐tectonic seismicity shows many similarities and few differences between 1982–1984 and the following period 1989–2010. Long‐period waveforms have been analyzed using spectral analysis, which shows a grouping into three macrofamilies. Similarities in the seismic signature of episodes of minor uplift suggest that they originate from the injection of fluids into the deep part of a geothermal reservoir (about 2.5 km depth) and in its transfer toward a shallower part (about 0.75 km depth). Most of the observed geophysical signals are related to this second phase. The evidence consists of spatial and temporal connections between the ground deformation, long‐period and volcano‐tectonic seismicity and changes in the geochemical parameters of fumaroles. In this study we focused our analysis on two uplift episodes observed in 2000 and 2006. The joint inversion of Differential Synthetic Aperture Radar (DInSAR) and tiltmeter data show that during these periods the ground deformation was generated by at least two distinct sources located at different depths, with the shallower activated in the later stages of the uplift episodes. Our interpretation of the recent dynamics of Campi Flegrei is that the deep part of the geothermal reservoir inflates in response to mass and heat input from a magmatic source. When the pressure exceeds a threshold, fluids starts to migrate into the shallower part. During this transfer, long‐period sources are activated in response to the fluid motion. The gradual diffusion of fluids in the surrounding rocks lowers the resistance of a pervasive fracture system generating shallow microseismicity. Finally, fluids reach the surface, which gives a distinct geochemical signature to the overlying fumaroles.
    Description: Published
    Description: B04313
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: fluid‐transfer episodes ; Campi Flegrei caldera ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-03-24
    Description: The Campi Flegrei caldera, a volcanic and densely populated area located to the west of Napoli (Italy), was characterized by rapid ground deformation during 1970-72 and 1982-84, for a total amount of 3.5 m in the city of Pozzuoli. Since 1985 a slow deflation was active, with episodic microcrises of uplifts. A new and consistent uplift event is now going on, beginning in November 2004, as revealed by spatial and terrestrial geodetic techniques. In particular, we adopt almost all the available ENVISAT ASAR data acquired from both ascending and descending orbits during 2002-2006, to generate mean deformation velocity maps and time series with spatial resolution of about 100 m. The maps are computed following the Small BAseline Subset (SBAS) approach (Berardino et al., 2002), that implements an appropriate combination of differential interferograms generated from SAR data pairs (60 SAR images for this work). In addition to satellite observations, we show data from the high precision levelling network of the INGV-Osservatorio Vesuviano, consisting in about 320 benchmarks. Levelling measurements are regularly carried out on both the whole network and along the coast line; in case of a bradyseismic crisis, the temporal sampling is strongly increased. Both DInSAR and levelling data evidence the maximum value of the vertical displacement near the city of Pozzuoli. We model the observed deformation by means of 3D pressurized point-source and extended source, performing inversions to constrain their shape and location. The resulting sources are also compared with that inverted for the 1982-84 unrest.
    Description: Unpublished
    Description: Wien
    Description: open
    Keywords: campi lfegrei ; geodetic data ; inversion ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Format: 2580537 bytes
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We investigated the Campi Flegrei caldera using a quantitative approach to retrieve the spatial and temporal variations of the stress field. For this aim we applied a joint inversion of geodetic and seismological data to a dataset of 1,100 optical levelling measurements and 222 focal mechanisms, recorded during the bradyseismic crisis of 1982–1984. The inversion of the geodetic dataset alone, shows that the observed ground deformation is compatible with a source consisting of a planar crack, located at the centre of the caldera at a depth of about 2.56 km and a size of about 4 × 4 km. Inversion of focal mechanisms using both analytical and graphical approaches, has shown that the key features of the stress field in the area are: a nearly subvertical σ 1 and a sub-horizontal, roughly NNE-SSW trending σ 3. Unfortunately, the modelling of the stress fields based only upon the retrieved ground deformation source is not able to fully account for the stress pattern delineated by focal mechanism inversion. The introduction of an additional regional background field has been necessary. This field has been determined by minimizing the difference between observed slip vectors for each focal mechanism and the theoretical maximum shear stress deriving from both the volcanic (time-varying) and the regional (constant) field. The latter is responsible for a weak NNE-SSW extension, which is consistent with the field determined for the nearby Mt. Vesuvius volcano. The proposed approach accurately models observations and provides interesting hints to better understand the dynamics of the volcanic unrest and seismogenic processes at Campi Flegrei caldera. This procedure could be applied to other volcanoes experiencing active ground deformation and seismicity.
    Description: Published
    Description: 3247–3263
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Stress field inversion ; Campi Flegrei ; volcano deformation ; volcanic seismicity ; joint inversion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Geodetic observations at Campi Flegrei caldera were initiated in 1905. Historical observations and the few measurements made before 1970 suggested a deflationary trend. Since 1969, the ground started to inflate during two major uplift episodes in 1969–72 and 1982–1985. We collected and reanalyzed all available punctual observations of vertical ground displacement taken in the period 1905–2009with special attention to the period before 1969, to reconstruct in greater detail the deformation history of the caldera. We make use of the many photographs of the sea level in a roman ruin (the Serapeum Market) taken during the period between 1905 and 1969 to infer with more accuracy its relative height with respect to the sea level. We identify a previously disregarded major episode of ground uplift occurred between 1950 and 1952 with a maximum uplift of about 73 cm. This finding suggests that Campi Flegrei is currently experiencing a prolonged period of unrest longer than previously thought. The higher seismicity associated with the later episodes of unrest suggests that the volcano has approached an instability threshold, which may eventually result in a volcanic eruption.
    Description: Published
    Description: 48–56
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 3.10. Storia ed archeologia applicate alle Scienze della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei ; deformation ; unrest ; precursor ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...