ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-14
    Description: We present an up-to-date high resolution picture of the ongoing crustal deformation field of Iberian region, based on an extensive combination of permanent and non-permanent GPS observations carried out since 1999. We detected appreciable deformation along the NW and SE margins of the Iberian Peninsula and along the Gibraltar arc, while on the inner parts of the peninsula, the crustal deformation occurs locally at rate 〈 15 nanostrain/year.
    Description: Published
    Description: 369-372
    Description: 1T. Geodinamica e interno della Terra
    Description: restricted
    Keywords: GPS ; Strain-rate ; Plate motion ; Iberia ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-07
    Description: Detailed studies of earthquakes triggered by a known source of stress change can shed light on the influence of fault frictional properties and preseismic stress on the initiation, propagation and arrest of seismic ruptures. Triggered and induced seismicity can provide unique opportunities to understand this problem. However, direct evidence is rare due to the absence of e.g., near-field surface ground deformation observations and unknown pre-earthquake stress conditions. Here, we collect geodetic data recording the coseismic effects of the Mw 5.1, 11 May 2011 Lorca (SE Spain) moderate earthquake. Elastic modelling results suggest that the nucleation process and main slip area occurred at very shallow depths (2-4 km) on the rupture plane along the Alhama de Murcia fault. Slip extends towards the surface from unstable to stable friction fault segments. We find that the slip area matches well a pattern of positive Coulomb stress change due to groundwater extraction in a nearby basin aquifer. These results indicate that the shallow slip distribution during the earthquake could be controlled by groundwater induced unloading stresses at the upper frictional transition of the seismogenic layer. The relationship between known crustal stress changes (e.g., groundwater extraction) and coseismic slip distribution could help, in general, to understand where and how earthquakes tend to occur.
    Description: Our research was funded by an Ontario Early Researcher Award, the CSRN NSERC Strategic Network Grant, and the NSERC and Aon Benfield/ICLR IRC in Earthquake Hazard Assessment. Additional support was provided by the MICINN (Ministerio de Ciencia e Innovación) projects CGL2005-05500-C02, CGL2008-06426-C01-01/BTE, PCI2006-A7-0660, and AYA2010-17448; as well the Moncloa Campus of Excellence (UCM-UPM, CSIC). Radar data were obtained by the ESA (European Space Agency)-CAT1:4460 and 6745 projects.
    Description: Published
    Description: 821-825
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: 2011 Lorca earthquake ; InSar and GPS ; Modelling ; groundwater crustal unloading ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Changes in gravity and/or surface deformation are often associated with volcanic activity. Usually, bodies with simple geometry (e.g., point sources, prolate or oblate spheroids) are used to model these signals considering anomalous mass and/or pressure variations. We present a new method for the simultaneous, nonlinear inversion of gravity changes and surface deformation using bodies with a free geometry. Assuming simple homogenous elastic conditions, the method determines a general geometrical configuration of pressure and density sources. These sources are described as an aggregate of pressure and density point sources, fitting the whole data set (given some regularity conditions). The approach works in a growth step‐by‐step process that allows us to build very general geometrical configurations. The methodology is validated against an ellipsoidal body with anomalous pressure and a parallelepiped body with anomalous density, buried in an elastic medium. The simultaneous inversion of deformation and gravity values permits a good reconstruction of the assumed bodies. Finally, the inversion method is applied to the interpretation of gravity, leveling, and interferometric synthetic aperture radar (InSAR) data from the volcanic area of Campi Flegrei (Italy) for the period 1992–2000. For this period, a model with no significant mass change and an extended decreasing pressure region satisfactorily fits the data. The pressure source is located at about ∼1500 m depth, and it is interpreted as corresponding to the dynamics of the shallow (depth 1–2 km) hydrothermal system confined to the caldera fill materials.
    Description: Published
    Description: B10401
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: reserved
    Keywords: Simultaneous inversion ; deformation ; gravity changes ; deforming calderas ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The Gibraltar Orogenic Arc, in the Western Mediterranean, represents a complex region of active deformation related to the oblique Nubia-Eurasia convergence process. To increase the knowledge on the ongoing active processes in this region, we have used the most up-to-date and comprehensive geodetic crustal motion and stress fields. To this end, we analyzed both continuous and campaign-mode GPS data collected between 1999.00 and 2011.00 across the area and compiled a multidisciplinary dataset of well-constrained stress indicators to be compared with the geodetic results. The main results highlight the oblique nature of the Nubia-Eurasia convergence, which provides the largest component of the observed stress-pattern and is responsible for a significant strain-rate field along the Gibraltar Orogenic Arc. We discuss our findings with respect to available geological, seismological and geophysical data in order to verify their coherency compared to more relevant geodynamical models proposed in literature. According to previous studies, we confirmed how much of the secondary stress-pattern can be related to the gravitational potential energy field, which may also be responsible for some 2D stress - strain-rate angular discrepancies observed in large areas of the Betics. In addition, taking into account the sub-orthogonal azimuthal relationship between the SHmax and εhmin directions and the Fast Polarization Directions, we conjectured a deep dynamic process controlling both the crustal stress field and the surface deformation on large areas of the orogenic arc. Finally, although the models proposed to explain the geodynamic pattern of the Gibraltar Orogenic Arc are supported by a discrete number of geological and geophysical observations, it is only the back-arc extension and westward rollback model that is able to adequately account for the vast majority of the observations. Based on our findings and other evidences, we retain that this process could still be active beneath the Gibraltar Orogenic Arc.
    Description: This research has been supported by the Spanish MICINN projects PCI2006-A7-0660 and AYA2010-17448, an Ontario Early Researcher Award, and the NSERC Canada and Aon Benfield/ICLR IRC in Earthquake Hazard Assessment. This research is a contribution to the Moncloa Campus of International Excellence (UCM-UPM, CSIC).
    Description: Published
    Description: 1071–1088
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Gibraltar Orogenic Arc ; Stress field ; Geodesy ; strain-rate field ; delamination ; Back-arc extension and rollback ; slab break-off ; crustal extrusion and lateral escaping ; Plate tectonic ; passive subduction ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier Science Limited
    In:  This work has been supported by the Spanish MINECO research projects AYA2010-17448 and ESP2013-47780-C2-1-R. It is a contribution for the Moncloa Campus of International Excellence.
    Publication Date: 2017-04-04
    Description: A spatially dense GNSS-based crustal velocity field for the Iberian Peninsula and Northern Africa allow us to provide new insights into two main tectonic processes currently occurring in this area. In particular, we provide, for the first time, clear evidence for a large-scale clockwise rotation of the Iberian Peninsula with respect to stable Eurasia (Euler pole component: N42.612°, W1.833°, clockwise rotation rate of 0.07 deg/Myr). We favour the interpretation that this pattern reflects the quasi-continuous straining of the ductile lithosphere in some sectors of South and Western Iberia in response to viscous coupling of the NW Nubia and Iberian plate boundary in the Gulf of Cádiz. We furnish evidence for a fragmentation of the western Mediterranean basin into independent crustal tectonic blocks, which are delimited by inherited lithospheric shear structures. Among these blocks, an (oceanic-like western) Algerian one is currently transferring a significant fraction of the Nubia-Eurasia convergence rate into the Eastern Betics (SE Iberia) and likely causing the eastward motion of the Baleares Promontory. These processes can be mainly explained by spatially variable lithospheric plate forces imposed along the Nubia-Eurasia convergence boundary.
    Description: Published
    Description: 439-447
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: GNSS velocity field ; crustal rotation ; quasi-continuous straining ; Iberia ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: InSAR measures can provide information about changes in distance between the ground and the satellite in radar line-of-sight (LOS) direction. Sometimes, as in the case of volcanic activity, the corresponding ground deformations can be modeled by means of pressure and/or mass sources. Usually, point sources and regular prolate or oblate bodies are used as source geometry for deformation. In this communication, we show a new method for non-linear inversion of position and gravity changes as produced by extended bodies with a free geometry. Their structures are described as aggregation of elemental sources with anomalous density and pressure, and they are modeled to fit the whole data and to keep some regularity conditions. A growth process permits to build general geometrical configurations. The method is tested by application to data of gravity and InSAR (LOS data for ascending and descending orbits) for the volcanic area of Campi Flegrei (Italy). Results are drawn with respect a structural gravimetric model and compared with previous models.
    Description: Published
    Description: Austria
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: open
    Keywords: Modelling of InSAR (LOS) ; Campi Flegrei ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: In this study the integration of Sentinel-1 InSAR (Interferometric Synthetic Aperture Radar) and GPS (Global Positioning System) data was performed to estimate the three components of the ground deformation field due to the Mw 6.0 earthquake occurred on August 24th, 2014, in the Napa Valley, California, USA. The SAR data were acquired by the Sentinel-1 satellite on August 7th and 31st respectively. In addition, the GPS observations acquired during the whole month of August were analyzed. These data were obtained from the Bay Area Regional Deformation Network, the UNAVCO and the Crustal Dynamics Data Information System online archives. The data integration was realized by using a Bayesian statistical approach searching for the optimal estimation of the three deformation components. The experimental results show large displacements caused by the earthquake characterized by a predominantly NW-SE strike-slip fault mechanism.
    Description: The research has been supported by the “Marco Polo” project by the University of Bologna (UNIBO), the Spanish Ministry of Economy and Competitiveness research project ESP2013-47780-557 C2-1-R and the EU 7th FP MED-SUV project (contract 308665). It is a contribution to the Moncloa Campus of International Excellence.
    Description: Published
    Description: 1-13
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: SAR interferometry ; GPS ; Sentinel-1 ; Earthquake ; 3D displacement ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-12-16
    Description: A twenty-year period of severe land subsidence evolution in the Alto Guadalentín Basin (southeast Spain) is monitored using multi-sensor SAR images, processed by advanced differential interferometric synthetic aperture radar (DInSAR) techniques. The SAR images used in this study consist of four datasets acquired by ERS-1/2, ENVISAT, ALOS and COSMO-SkyMed satellites between 1992 and 2012. The integration of ground surface displacement maps retrieved for different time periods allows us to quantify up to 2.50 m of cumulated displacements that occurred between 1992 and 2012 in the Alto Guadalentín Basin. DInSAR results were locally compared with global positioning system (GPS) data available for two continuous stations located in the study area, demonstrating the high consistency of local vertical motion measurements between the two different surveying techniques. An average absolute error of 4.6 ± 4 mm for the ALOS data and of 4.8 ± 3.5 mm for the COSMO-SkyMed data confirmed the reliability of the analysis. The spatial analysis of DInSAR ground surface displacement reveals a direct correlation with the thickness of the compressible alluvial deposits. Detected ground subsidence in the past 20 years is most likely a consequence of a 100–200 m groundwater level drop that has persisted since the 1970s due to the overexploitation of the Alto Guadalentín aquifer system. The negative gradient of the pore pressure is responsible for the extremely slow consolidation of a very thick (〉 100 m) layer of fine-grained silt and clay layers with low vertical hydraulic permeability (approximately 50 mm/h) wherein the maximum settlement has still not been reached.
    Description: Part of this work is supported by the Spanish Government under project TEC2011-28201-C02 and by the project 15224/PI/10 from the Regional Agency of Science and Technology in Murcia. Additional funding was obtained from the Spanish Research Program through the projects AYA2010-17448, ESP2013-47780-C2-1-R and ESP2013-47780-C2-2-R and by the Ministry of Education, Culture and Sport through the project PRX14/00100.
    Description: Published
    Description: 40-52
    Description: 6T. Sismicità indotta e caratterizzazione sismica dei sistemi naturali
    Description: JCR Journal
    Description: restricted
    Keywords: Land subsidence ; Persistent Scatterer Interferometry (PSI) ; Spatio-temporal analysis ; Lorca ; Groundwater level ; GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...