ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: The Gargano promontory is a ENE-WSW topographical and structural high located at the inner border of the Apulia foreland. The post-Miocene tectonics of the Gargano area is characterized mainly by E-W strike-slip and NW-SE normal faults, whose present state of activity is debated, since there have been no large earthquakes in the instrumental era. Still, the Gargano is well known as a seismically active zone: destructive earthquakes (and even a tsunami) have occurred in historical times, with felt effects up to XI MCS, although the exact location of the seismogenic sources is uncertain. The level of background seismicity is low, with a maximum magnitude Mw=5.4 occurring in the central part of the promontory. We have investigated the surface deformation in the area using the PS-InSAR processing technique. We have analysed 83 descending, and 31 ascending images, obtaining good coherence over about 200.000 Permanent Scatterers. We have modeled the ground velocity field using elastic dislocation models and a non-linear inversion scheme. The modeling preliminary results suggest that the area is presently accumulating strain along the E-W Mattinata fault, with locking depths in the range 10 to 15 km
    Description: Published
    Description: Vienna, Austria
    Description: open
    Keywords: SAR ; Inteferometry ; Permanent Scatterers ; Gargano ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Format: 3064034 bytes
    Format: image/png
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: VELISAR (Ground VELocity in Italian Seismogenic Areas) is a scientific research initiative aimed at producing a map of the ground deformation over most of the seismogenic areas of Italy, using the space-based technique of multitemporal Synthetic Aperture Radar Interferometry (InSAR). The ground velocities derived from InSAR data will be validated by means of ground based data obtained from GPS, optical leveling, seismological and neotectonic studies. The scope of the project is to produce a high-resolution ground deformation dataset useful to model the seismic cycle of strain accumulation and release at the scale of the single faults. The main objective of VELISAR is to produce maps of ground velocity with the following characteristics: - A ground resolution better than 100 m. - Average uncertainty of LoS velocity measurements smaller than 2 mm/yr . - Temporal coverage of at least 7 years. - Retrieval of East and Up components from ascending and descending LoS. VELISAR will exploit the potential of the long time series (1992-2000) of ERS InSAR data maintained in the ESA archives; over 4000 ERS images will have to be processed to accomplish its objectives. Presently, two InSAR techniques for the measurement of slow ground deformation are used in VELISAR: the Permanent Scatterers (PS) technique developed by the Politecnico of Milano (POLIMI), and the Small Baseline Subset (SBAS) technique, developed by the Institute for Remote Sensing of Environment (IREA-CNR), in Napoli. The PS technique is applied by TRE preferably over areas characterised by diffuse temporal decorrelation due to, for instance, erodible lithologies, agricultural land use and strong vegetation cover. In these areas we expect to obtain good temporal coherence mainly on sparse point scatterers. The SBAS technique is applied by IREA and INGV mostly over areas where limited temporal decorrelation is expected: urban areas, scarcely vegetated areas. The ground resolution at which these data are originally processed is 80 m. An important goal of the VELISAR initiative is to disseminate the information on the InSAR-derived ground velocity measurements, to the scientific community and to the public in general. Such goal is accomplished through a dedicated web site, where the velocity maps of the italian seismogenic areas will be progressively published. We will present the initiative, its scope and objectives, the technical details and the data processing strategies, and some examples of ground velocity maps.
    Description: Published
    Description: Vienna, Austria
    Description: open
    Keywords: SAR ; Inteferometry ; Small Baseline Sunset ; SBAS ; Permanent Scatterers ; PS ; Ground Velocity ; seismogenic area ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Format: 3029267 bytes
    Format: image/png
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We present high-resolution Vp models of the Middle Aterno basin obtained by multi-scale non-linear controlled-source tomography. Seismic data have been collected along four dense wide-aperture profiles, that run SW-NE for a total length of ~ 6 km in the hangingwall of the Paganica - S. Demetrio Fault, source of the 6th April 2009 (Mw 6.3) L'Aquila normal-faulting earthquake. Seismic tomography expands the knowledge of the basin with high spatial resolution and depth penetration (〉 300 m), illuminating the Meso-Cenozoic substratum that corresponds to high-Vp regions (Vp 〉 3500-4000 m/s). Low Vp (1500-2000 m/s) lacustrine sediments (Early Pleistocene in age) are imaged only in the SW sector of the basin, where they are up to 200 m thick and lie below coarse fluvial and alluvial fan deposits. The overall infill consists of Early to Late Pleistocene alluvial fan and fluvial sediments between the Paganica Fault and the Bazzano ridge, with Vp reaching 3000 m/s for the oldest conglomeratic bodies. The substratum has an articulated topography. The main depocenter, ~ 350 m deep, is in the SW sector of the basin south of the Bazzano ridge. Remarkably, this depocenter and the overlying thick lacustrine body match the area of maximum coseismic subsidence observed after the 2009 earthquake. In the Paganica area, Vp images unravel large steps in the substratum related to two unreported SW-dipping buried strands, synthetic to the Paganica Fault, with ~ 250 m associated total vertical throw. This finding has important implications on the long-term history of the Paganica – S. Demetrio Fault system, whose total vertical displacement has been previously underestimated. An additional ~ 250 m vertical offset along this complex Quaternary extensional structure should therefore be considered.
    Description: Published
    Description: 373-388
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Non-linear Tomography ; Normal Fault System ; L’Aquila Earthquake ; Middle Aterno basin ; Central Apennines, Italy ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...