ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Magma flow during explosive volcanic eruptions has been described assuming rigid conduits with simple cylindrical or planar geometries. Here we study the dynamics of explosive volcanic flows to take account of the role of elastic deformation of the conduit influenced by local magmatic pressure. Three cases are investigated: a dyke with elliptical cross-section, a cylindrical conduit and a deep dyke connected to a shallow cylinder. The model CPIUC (Macedonio et al., 2005) was used for simulations and generalized to account for elastic deformations of the conduit cross-section area due to magmatic overpressure. Fragmentation level is typically deeper in a dyke than in a cylinder. For flows in wide dykes pressure at the fragmentation depth can be lower than the surrounding lithostatic pressure by several tens of MPa, indicating that the wall-rocks of the dyke will be unstable, constraining the dyke width and eventually blocking the eruption. On the other hand, when the fragmentation level is shallow the corresponding lithostatic pressure is not large enough to close the dyke and eruptions from wide dykes are possible. The behaviour changes drastically when we assume the conduit is a dyke at depth that evolves to a cylinder near the surface. In this case even very wide dykes can be stable because the fragmentation level moves into the cylindrical region where deformation is negligible.
    Description: Published
    Description: 455–462
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: conduit geometry ; explosive eruption ; elastic effect ; dyke deformation ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We consider the process of slow extrusion of very viscous magma that forms lava domes. Dome-building eruptions are commonly associated with hazardous phenomena, in- cluding pyroclastic flows generated by dome collapses, explosive eruptions and volcanic blasts. These eruptions commonly display fairly regular alternations between pe- riods of high and low or no activity with time scales from hours to years. Usually hazardous phenomena are asso- ciated with periods of high magma discharge rate, thus, understanding the causes of pulsatory activity during ex- trusive eruptions is an important step towards forecasting volcanic behavior, especially the transition to explosive ac- tivity when magma discharge rate increases by a few orders of magnitude. In recent years the risks have increased be- cause the population density in the vicinity of many active volcanoes has increased.
    Description: Published
    Description: 3.6. Fisica del vulcanismo
    Description: open
    Keywords: Volcanic Eruptions ; Cyclicity ; During Lava ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...